

Improving Soybean Productivity

Shawn P. Conley, J Gaska, A Roth, A Gaspar, D Marburger, E Smidt, and S Mourtzinis
State Soybean and Small Grains Specialist
University of Wisconsin, Madison

2013 WI Soybean Yield Contest Winners

Division	Rank	Contestant	County	V	/ariety	Yield (bu/a)
1	1	Paul Graf	Door	Pioneer	90Y90	57.8
1	2	Steven Kloos	Marathon	Pioneer	91Y30	55.0
2	1	Steve Stetzer	Jackson	Pioneer	91Y90	71.2
2	2	Kennard Wagner	Manitowoc	Renk	RS183NR2	65.0
3	1	Rick Devoe	Green	Pioneer	P28T33R	92.1
3	2	Ron Ellis	Walworth	Dairyland	DSR-2190/R2Y	74.4
3	Recognized	UW-Gaspar, Marburger, Smidt	Columbia	Pioneer	P28T33R	87.4
4	1	Dean Booth	LaFayette	Asgrow	AG 2431	82.7
4	2	Mary Kay Booth	LaFayette	Asgrow	AG 2433	81.8

Winners Management Practices

WWW.COOLBEAN.INFO

Avg. Planting date	May 14 th
Avg. Seeding rate (seeds/acre)	176,111
	% using this practice
Inoculant	33
Seed fungicide	67
Seed insecticide	56
Foliar fungicide	56
Foliar insecticide	22
Row spacing < 30"	89
Conventional tillage	56
Previous crop not corn	11

WI Soybean Program: The 5 W's

U.S. Soybean Acreage and Production Value 1996 - 2013

What input provides you the most consistent ROI annually?

	Responses						
	Percent	Count					
Seed treatment	64.83%	188					
Foliar feed	8.97%	26					
Foliar insecticide	9.66%	28					
Foliar fungicide	5.86%	17					
e I just throw the nk at it and hope something pays	10.69%	31					
Totals	100%	290					

Foliar fee Foliar insecticid Foliar fungicid No clue I just throw th kitchen sink at it and hop something pay **Total**

Soybean Yield response to Trait and Management

- No published University data supporting that the soybean yield plateau can be overcome solely by
 - Intensive management (high input)
 - Adoption of new yield/input responsive traits (i.e. RR2Y)
- Goal is to quantify the effect of soybean trait and agronomic practice in soybean yield
 - 1. Characterize the effect of multiple input interactions on soybean yield
 - 2. Quantify soybean trait response to intensive management
- 3 sites
 - Arlington, Fond du Lac, Janesville
- 3 years
 - 2011 to 2013

Multiple Input Interactions on Yield

Main effect	P-value
Triain circot	ı varac
Trait	0.3968
RR1/RR2Y	
Seed treatment	0.8825
ApronMaxx (1.5 fl oz/cwt)	
Optimize 400 (2.8 fl oz/cwt)	
Foliar fertilizer	0.9262
3-18-18 (3 gal per acre @ V6)	
Foliar insecticide	0.7701
Warrior w/Zenon (3.0 fl oz @ R2/3)	
Foliar fungicide	0.0281*

RR1 Variety
Pioneer 92Y30

RR2Y Varieties
Dairyland DSR-2375/R2Y (2011)
Dairyland DSR-2411/R2Y (2012-13)

Quilt Xcel (14 fl oz @ R2/3)

*Difference of Least Squares Means = 2.2075 bu/A

Trait Response to Intensive Management

Main effect	P-value		
Trait	0.7477		

RR1/RR2Y

Intensive Management

<.0001*

ApronMaxx (1.5 fl oz/cwt)

Optimize 400 (2.8 fl oz/cwt)

3-18-18 (3 gal per acre @ V6)

Warrior w/Zenon (3.0 fl oz @ R2/3)

Quilt Xcel (14 fl oz @ R2/3)

Trait x Intensive Management

0.8558

*Difference of Least Square Means = 3.2748 bu/A

RR1 Varieties

Dairyland DSR-2011/RR

Pioneer 92Y30

Pioneer 92Y51

NK Brand S19-A6

NK Brand S21-N6

RR2Y Varieties

Asgrow AG2631	(2011)
Asgrow AG2431	(2011-13)
Asgrow AG2232	(2013)
Dairyland DSR-2375/R2Y	(2011)
Dairyland DSR-2411/R2Y	(2012-13)
FS HiSoy HS24A01	(2011-12)
Renk RS241R2	(2011-13)
Trelay 25RR26	(2012)
Trelay 25RR91	(2013)

U.S. trend toward earlier planting

Percent of U.S. Soybean Area Planted by Week for the Period 1980-2010 (5-Year Avg.)‡

Week #	17	18	19	20	21	22	23	24	25	26
	24-Apr	1-May	8-May	15-May	22-May	29-May	5-Jun	12-Jun	19-Jun	26-Jun
Year										
1980			11	28	49	62	77	85	92	95
1985		3	11	23	40	55	71	81	88	94
1990		8	23	43	60	73	82	88	93	96
1995			19	37	53	67	78	86	93	
2000	3	8	19	37	55	67	78			
2005	9	23	39	56	71	82	90	94		
2010	8	19	35	57	75	84	90	94	97	

^{† -}Date nearest corresponding week number

*Source: USDA-NASS, 2011

^{‡ -}Average percent planted of previous 5 years

MG II(a) & MG III(b) yield at early and late planting (2010-2011)

- Within MGs, yields have improved over cultivar year of release (*P*<0.001). Represents the successful efforts made by breeders to improve soybean yield over time. (Luedders, 1977; Wilcox et al., 1979; Specht and Williams, 1984; Wilcox, 2001; De Bruin and Pedersen, 2008b).
- Within MG IIIs, there was a difference (*P*<0.05) in the rate of yield improvement over time between early and late plantings. *A synergistic interaction!*

Introduction

- Fusarium virguliforme causes sudden death syndrome of soybean
- Delaying planting has shown to reduce SDS symptoms
 - This work was done ~20 years ago (Hershman et al., 1990; Wrather et al., 1995)
 - Planting dates used in those studies started in mid May
 - Planting dates are trending earlier

I have experienced SDS on my Farm/Territory

	Responses						
	Percent	Count					
Yes	44%	132					
No	37%	110					
Not sure	19%	55					
Totals	100%	297					

Objective

Quantify the impact of planting date on SDS development and yield loss

– In other words, will planting earlier and increasing risk of SDS development be better or worse on yield than delaying planting and reducing risk of SDS development?

- Hancock Ag Research Station (irrigated)
- Experimental design
 - Split-split plot RCBD with 4 reps
 - Main plots: Planting date (5/6, 5/24, 6/17)
 - Subplots: 10 varieties ranging in susceptibility to SDS
 - Sub-subplots: 2 inoculation treatments
 - Uninoculated vs. inoculated
 - Oat grains infested with F. virguliforme was placed in furrow at planting

Data collected

- Soil samples at planting and R8 to determine SCN egg counts and F. virguliforme populations
- Spring and fall stand counts
- Weekly NDVI measurements
- SDS ratings from R5.5/R6 to R7
- Yield

- SDS rating protocol gives a Disease Index (DX)
 - DX is a combination of disease incidence (DI) and disease severity (DS). It is calculated as DI x DS/9, and has a range of 0 (no disease) to 100 (all plants prematurely dead at or before R6).
 - Disease Incidence (DI) DI = % of plants with leaf symptoms, recorded in increments of 5.
 - Disease Severity (DS) Record in increments of 0.5, scoring ONLY those plants showing symptoms:

Score Description of Symptoms

- 1 1-10% of leaf surface chlorotic, OR 1-5% necrotic
- 2 10-20% of leaf surface chlorotic, OR 6-10% necrotic
- 3 20-40% of leaf surface chlorotic, OR 11-20% necrotic
- 4 40-60% of leaf surface chlorotic, OR 21-40% necrotic
- 5 Greater than 60% of leaf surface chlorotic, OR greater than 40% necrotic
- 6 Premature leaf drop up to 1/3 defoliation
- 7 Premature leaf drop up to 2/3 defoliation
- 8 Premature leaf drop GREATER than 2/3 defoliation
- 9 Premature death

SDS Ratings

Yield

Relationship Between SCN and SDS

- Has been studied for almost 30 years and results have been inconsistent
 - Some research says more severe SDS symptoms occur when SCN is present
 - Other research reports weak or no association
- Relationship between the actual presence of F. virguliforme in the soil as it relates the presence of SCN has been under- studied

Objectives

Determine the incidence of SCN and F.
 virguliforme in commercial soybean fields in WI

 Determine if establishment of these pathogens is interrelated

- Study was possible through the check-off funded Wisconsin Soybean Marketing Board (WSMB) SCN soil testing program which offers free testing to WI growers.
- Soil samples that were voluntarily submitted during 2011 and 2012 were tested for SCN and F. virguliforme.

2011 Results

- 135 samples submitted
- 56 positive for SCN
- 10 positive forF. virguliforme

2012 Results

- 318 samples submitted
- 63 positive for SCN
- 13 positive for F. virguliforme

Results

- Soil samples where both SCN and F.
 virguliforme were found in the same sample
 occurred infrequently (data not shown).
- Counties where both SCN and F. virguliforme were found were not common.
 - Our results also show F. virguliforme was found in counties farther west and north of the area where Bernstein et al. (2007) first found the pathogen.

Conclusions

- Our study found a negative correlation between SCN and F.
 virguliforme, indicating that as the probability of finding F.
 virguliforme in a soil sample increases, the probability of finding SCN in the same soil sample decreases.
 - As the odds of detecting F. virguliforme in soil approach 100%, the likelihood of finding SCN in Wisconsin soybean fields is estimated at just 60%.
- This negative correlation suggests that SCN and F. virguliforme do not rely on each other to colonize fields.

WWW.COOLBEAN.INFO

- Therefore, fields with heavy SCN pressure are not at greater risk for colonization by F. virguliforme.
- However, in the infrequent case where SCN and F. virguliforme do occur together, symptoms of disease and damage by both pathogens can be synergistic.
 - Therefore, disease management practices for both pathogens should be implemented in these fields.

Generation 1 Trials

Years: 2008 to 2010

Locations: 9 each year (27 environments)

- Design: randomized complete block
- Three seed treatments:
 - Untreated control
 - ApronMaxx RFC
 - CruiserMaxx

Pathogens: *Pythium, Phytophthora, Fusarium, Rhizoctonia* spp., *Sclerotinia* and *Phomopsis* spp. (suppression)

Insects: aphids, bean leaf beetle, and seed corn maggot

Four soybean varieties each year (not all used in all trial years)

Seed treatments?

			G	GSP = \$6 b ⁻¹		GSP = \$9 bu ⁻¹		GSP = \$12 bu ⁻¹)u ⁻¹	
			AY =	AY =	AY =	AY =	AY =	AY =	AY =	AY =	AY =
Seed			40	60	80	40	60	80	40	60	80
treatment	RR	P		-bu ac ⁻¹			bu ac ⁻¹			bu ac ⁻¹	
Apron	1.5	0.030	42	72	84	72	87	92	84	92	94
Maxx											
Cruiser	2.9	<0.001	3	56	88	56	93	100	88	98	98
Maxx											

The relative ratio means that the range in yield protected is $^{\sim}$ +0.6 bu ac⁻¹ @ 40 bu ac⁻¹ to 2.3 bu ac⁻¹ @ 80 bu ac⁻¹ for +1.5% or +2.9%, respectively

Soybean Seed Treatments

- Lots of options: Who wins!
- 10 sites
 - Arlington, Chippewa Falls,
 East Troy, Fond du Lac,
 Galesville, Hancock,
 Janesville, Lancaster,
 Marshfield, and Seymour
- 3 years
 - 2011 to 2013

Distribution of Yield (2011-12)

Soybean Seed Treatments (2011-12)

Code	Product	Rate	_
UTC	none		
AM	ApronMaxx RFC	0.0094 mg ai/seed	
CM	ApronMaxx RFC	0.0094 mg ai/seed	
	Cruiser 5FS	0.085 mg ai/seed	
CMA	ApronMaxx RFC	0.0094 mg ai/seed	-
	Cruiser 5FS	0.085 mg ai/seed	
	Avicta 500FS	0.15 mg ai/seed	_
T2000	Trilex 2000	1.0 fl oz/cwt	
	Allegiance	0.55 fl oz/cwt	_
TPV	Trilex 2000	1.0 fl oz/cwt	
	Allegiance	0.55 fl oz/cwt	
	Poncho/Votivo	2.0 fl oz/cwt	
	Precise 1010	1.5 fl oz/cwt	
	Gaucho	1.6 fl oz/cwt	*only in 2011
	Yield Shield	0.1 oz/cwt	*only in 2011
AC1	Acceleron DX-109	12.9 g/cwt	
	Acceleron DX-309	25.9 g/cwt	_
AC2	Acceleron DX-109	12.9 g/cwt	-
	Acceleron DX-309	25.9 g/cwt	
	Acceleron IX-409	72.8 g/cwt	

There was a significant variety by treatment interaction

Distribution of Yield (2013)

Soybean Seed Treatments (2013)

Code	Product	Rate
UTC	none	
AM	ApronMaxx RFC	0.0094 mg ai/seed
CM	ApronMaxx RFC	0.0094 mg ai/seed
	Cruiser 5FS	0.0756 mg ai/seed
CMA	ApronMaxx RFC	0.0094 mg ai/seed
	Cruiser 5FS	0.0756 mg ai/seed
	Avicta 500FS	0.15 mg ai/seed
EVG	EverGol Energy	1.0 fl oz/cwt
	Precise 1010	1.5 fl oz/cwt
EPV	EverGol Energy	1.0 fl oz/cwt
	Poncho/Votivo	2.0 fl oz/cwt
	Precise 1010	1.5 fl oz/cwt
AC3	Acceleron DX-109	12.9 g/cwt
	Acceleron DX-309	25.9 g/cwt
	Acceleron DX-612	8.0 g/cwt
AC4	Acceleron DX-109	12.9 g/cwt
	Acceleron DX-309	25.9 g/cwt
	Acceleron DX-612	8.0 g/cwt
-	Acceleron IX-409	72.8 g/cwt

No Free Lunch: Neonics and Honey Bees

NSSI: How Soy
Sustainability Can Help
you Meet Your
Customers' Demands
and Expand Your
Markets

Shawn Conley, Deana Knuteson, AJ Bussan, Jeff Wyman, Paul D. Mitchell and Fengxia Dong: University of Wisconsin-Madison

Chuck Prellwitz and Ron Moore
ASA/USB/USSEC Joint Sustainability Task
Force

Three Elements of Sustainability

Social Factors

Human resources
Waste management and recycling
Community involvement
Maintaining lands in farming

Energy

Knowledge of energy and fuel uses Efficiency improvement Alternative energy sources Bio-energy investment

Economics

Cost of production/net returns Working with financial or business advisors Insurance and disaster plans Farm succession/long-term sustainability

Value of Product

Marketability of product Food safety Product differentiation Preservation of traceability/identity

Ecosystems

Knowledge of general principles Invasive species management Utilizing ecological science in planning Developing ecological restoration sites

Soil and Water

Developing conservation plans Fertility management and using best managment practices (BMPs) Water management/adopting advanced, new techniques

General Pest Management

Scouting for pests/keeping written records Accurate pest identification Use of biologically-based integrated pest management strategies Resistance management

General Production

Record keeping Plant health Pesticide safety/use of reduced risk materials Increased efficiency in productivity

Soybean Data Collection

- Dec 2012 and Jan 2013 in WI and IL, plus online
- Data used for analysis
 - > 600 respondents
 - > 275,000 soybean acres
 - > 700,000 total acres
 - Expanding across the U.S. this winter
 - 70 questions from Soybean-specific survey
- Questions on pest scouting, rotational practices, nutrient management, etc.

Principal Components

- Principal Component Analysis (PCA)
- Mathematically creates a new set of principal components (PCs) from the data that
 - Reduces number of variables
 - Removes correlation
 - Converts discrete to continuous variables
- Each PC measures intensity of farmer practice adoption, so larger PC is better

How do we Measure Sustainability?

- After PCA, still lots of variables: 40 instead of 70
- Data Envelope Analysis (DEA) measures how intensely each farmer adopts sustainable practices relative to the best of his peer group
- Define a "Frontier of Sustainability" for the PC's the best anyone has done = the most intense sustainable practice adoption
- Distance from origin relative to frontier gives a numerical measure of sustainability practice adoption that ranks each farmer relative to peers

Frontiers of Sustainability (Theory)

- Farmer practice adoption gives PC1 and PC2
- Plot these points: Each grower is a point
- DEA Frontier: outer envelope of points
- Distance from origin to point measures practice adoption intensity relative to frontier
- Max score = 1.0
- PC_1 Min score = 0.0

NSSI Sustainability Scores

Survey Results: Sustainability Practice Adoption and Percentage of Growers in Illinois and Wisconsin Implementing Research-based Practices:

Sustainability Shifts over Time

- Recollect data and analyze to measure improvement over time by shift in sustainability score distribution and shift in sustainability frontier
- Documents that more growers are adopting more of the sustainable practices

Meet "Coolbean the Soybean"

www.coolbean.info

- @badgerbean
- thesoyreport.blogspot.com

