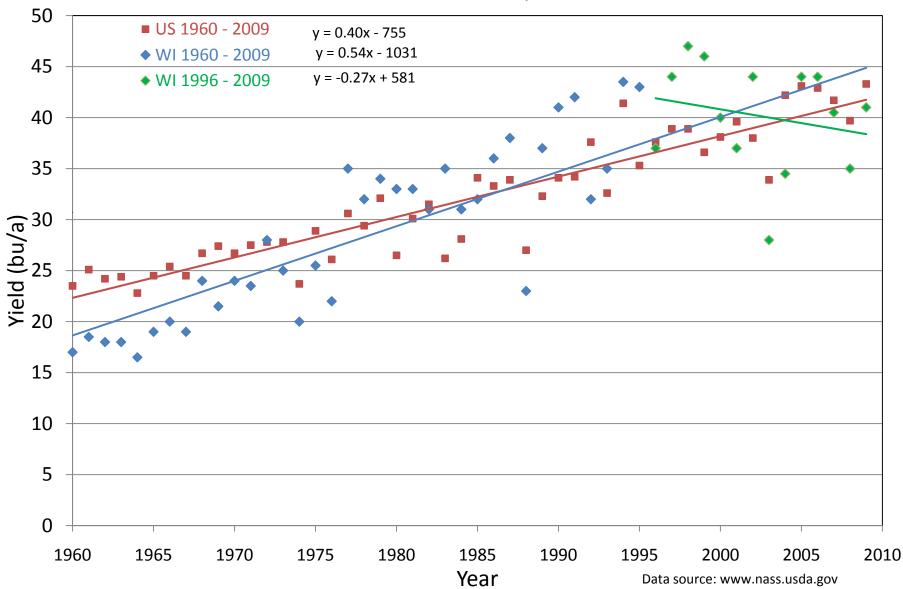
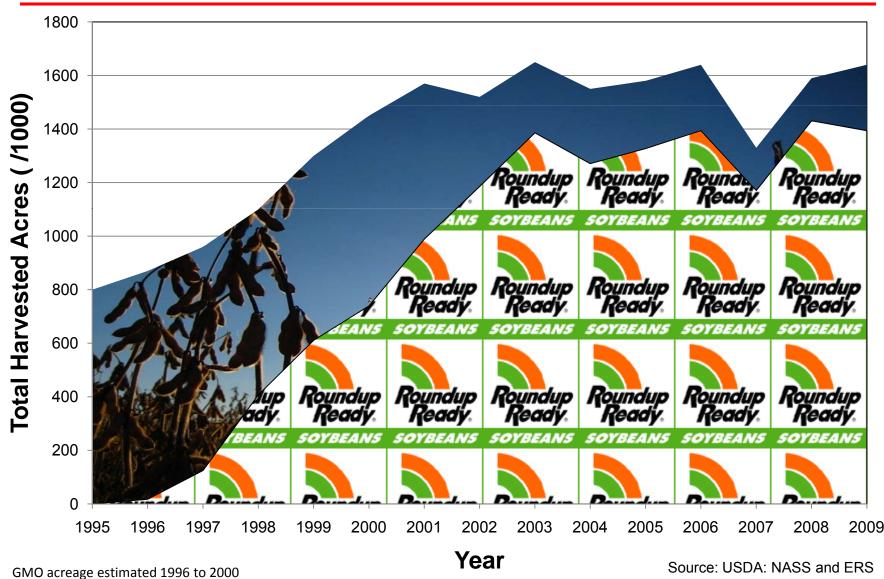
Shawn P. Conley, Paul Esker, John Gaska, and Mark Martinka State Soybean and Small Grain Ext. Specialist, State Ext. Field Crops Pathologist, Senior Outreach Specialist, and Program Manager; University of Wisconsin, Madison



Quantifvin



Soybean Yields

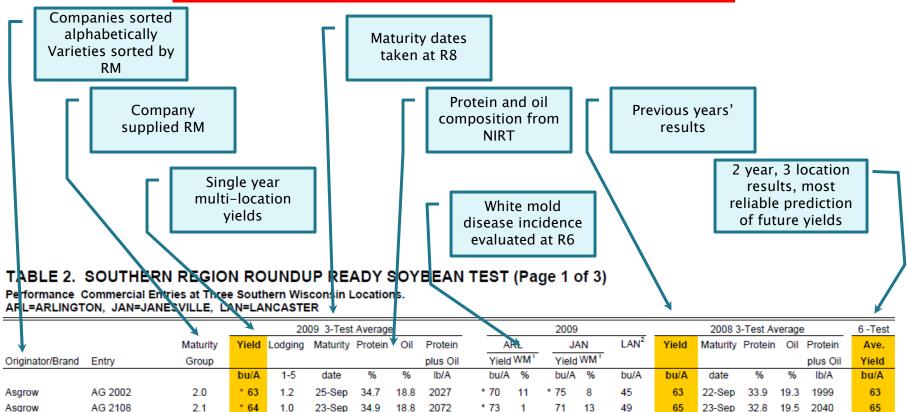
United States and Wisconsin, 1960 to 2010

Herbicide resistant soybean variety use- WI 1996 to 2009

Soybean Yield is a Function of:

- Genetic potential
 - Variety selection
 - Traits and yield drag/lag
- Agronomic management
 - Planting date, seed treatments, soil fertility, pest management, traits, etc.
- Environment
 - Water, temperature, climate change, etc.

Soybean Variety Test Locations 2009 Issues University of Wisconsin - 2009 **Decreased GDU's** • Yields **Delayed harvest** Low-High Average Mid-season drought Soybean aphid • Spooner 31-44 White mold • 39 **Chippewa Falls** 38-51 45 Marshfield Seymour 43-58 🟲 46-61 55 51 Galesville Hancock 42-60 44-71 🕿 Fond du Lac 52 56 45-60 52 Arlington 55-74 Lancaster 66 Janesville 38-62 62-80 50


S. Bay

38-52

47

71

Data available in our tables

www.coolbean.info

22

4

8

23

9

10

19

51

49

49

* 62

53

51

52

43

65

66

71

73

70

69

72

67

68 3

62

27-Sep 35.7 17.6 2073

Page 6.

lohn Gaska-Agronomy © 2009

RY 2409

AG 2521V

AG 2606

AG 2939

2351R Brand

2400R2 Brand

2551R Brand

R2C 2139

Asgrow

Asgrow

Asgrow

Asgrow

Channel

Channel

Channel

Croplan

24

2.5

2.6

2.9

2.3

2.4

2.5

2.1

* 64

62

60

* 67

61

* 63

60

61

1.1

1.1

1.6

1.3

13

1.1

1.0

1.1

25-Sep

30-Sep

29-Sep

7-Oct

5-Oct

2-Oct

1-Oct

24-Sep

34.2

34.6

37.1

35.0

35.3

35.2

34.0

34.1

18.8

19.2

17.2

18.5

18.4

18.4

18.7

19.2

2031

1997

1946

2158

1966

2032

1903

1965

* 74

66

57

* 68

62

67

61

* 73

11

1

23

16

8

13

10

3

Download Excel file to use Excel's functions to group, sort, print, etc.

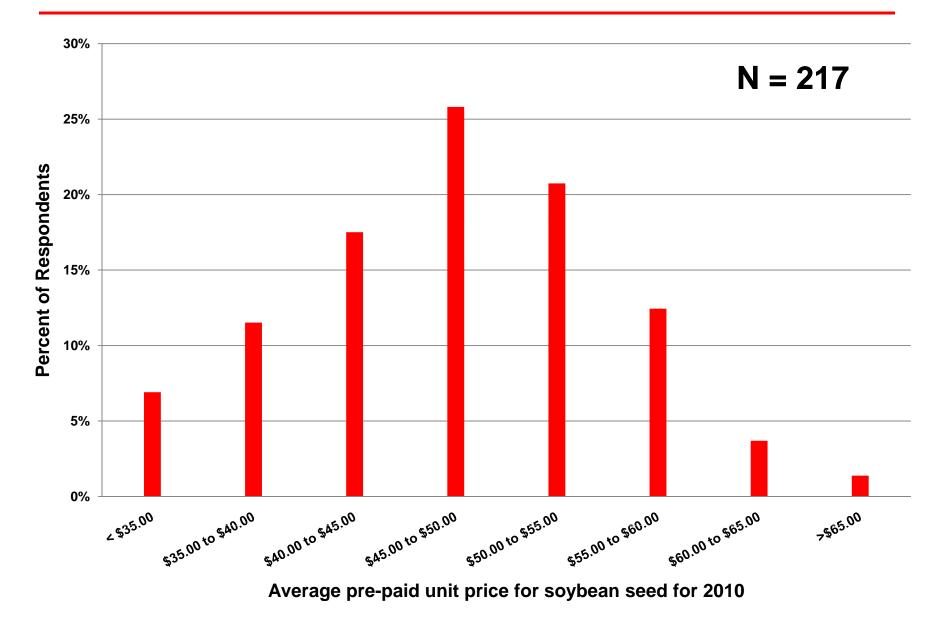
oybean Variety Trial R hey are distributed firs the results are availa quest to <u>Mark Martin</u> é	oybean Variety Trial Resu esubs are generally available starting the last week of Nov on this way bits, the through weekly nevergapagers in Wis- ie after December 3 and the printed version after Decemb J. WW Agroency rial results are evailable in a couple formats, depending or December 2010	ember each year onsin. Photo copies ser 15 by sending a
oybean Variety Trial F hey are distributed firs the results are availat quest to <u>Mark Martrik</u> n this website, variety Year Acrobat 2	suits are generally available starting the last week of Nov on this web site, then through weekly newspapers in Wiss is after December 2 and the printed version after Decemb 1, UW Agronomy. Inal results are available in a couple formats, depending or	ember each year onsin. Photo copies ser 15 by sending a
hey are distributed first the results are availat quest to <u>Mark Marticle</u> in this website, variety Year <u>Acrobit</u>	on this web site, then through weekly newspapers in Wisc is after December 3 and the printed version after Decemb J. UW Agnonomy. nal results are available in a couple formats, depending or	onsin. Photo copies ber 15 by sending a
the results are availat quest to <u>Mark Martine</u> in this website, variety Year Acrobit 3	le after December 3 and the printed version after Decemb g .UW Agronomy rial results are available in a couple formats, depending or	er 15 by sending a
quest to <u>Mark Martrik</u> n this website, variety Year Acrobat	a, UW Agronomy nial results are available in a couple formats, depending or	
Year Acrobat	\frown	n your usage.
	click here	
2007 click here		
2006 click here	ctick.here	
2005 click here 2004 click here	click here	
2003 click here	click here	
2000 click here	click here	
1999 click here	click here	
1997 click here	chok here	
	2004 click here 2003 click here 2003 click here 2003 click here 2004 click here 2005 click here 2006 click here 2007 click here 2008 click here 2009 click here 2009 click here	004 disk.html Disk.html 002 cite.html disk.html disk.html 002 cite.html disk.html disk.html 001 disk.html disk.html disk.html 0000 disk.html disk.html disk.html 0000 disk.html disk.html disk.html 099 disk.html disk.html disk.html

Home	Insert Page Layo	out Form	nulas	008_WI_Sc	Review	View		veloper	Add-Ir		obat							0 -	. 1
X 195 19					1000 (1.550				1000		-	a	1913	de FO	a area	rem.	
			0	Dennect	7.	A Z Z A		Ka		*	+	E	ă 🗄		2	Ð	2	+	9.18
m From Fr	rom From Other E	Existing	Refresh	Propertie	Z		Filt	er Re		Text to	Remov	e Da	ta Cons	olidate W	/hat-If	Grou	p Ungrou	p Subtota	
ess Web T	fext Sources * Con	nnections	All -	Se Edit Link	5 A*			Ac	vanced	Columns		tes Valida	tion *		alysis *	*	*		
G	et External Data		Co	nnections			Sort &	Filter				Data	Tools				Outlin	1e	
a na na A		8 B 0		E- 7 🕯	P =40 =38		OF		97 - FS		MT	- 10 -	A A I	B I %	Ŧ				
				<u></u>		Cart Care	e u		- <u>-</u> 0			1000	n a -		E 100				
A10	- (°		grow																_
А	В		DEF	G	Н	- I	J	K	LM		PQ	R S T	U	V	W	Х	Y	Z AA AB	
TABLE 2	2. SOUTHERI	N REGIO	DN RC	DUNDU	P REA	DY S	OY	BEAN	TES.	Г 🛛									
Performance	e Commercial Entr	ies at Thre	e South	nern Wisc	onsin Lo	cations													
ARL=ARLING	GTON, JAN=JANES	VILLE, LA	N=LAN	CASTER															
				20	08 3-Test	Average				2008			2	2007 3-Te	st Avera	ge		6 -Test	
		Maturity	Yield	Lodging	Maturity	Protein	Oil	Protein	ARL	JAN	LAN	Yield	Lodging	Maturity	Protein	n Oil	Protein	Ave.	
Originator/Brai	nd Entry	Group						plus Oil									plus Oil	Yield	
			bu/A	1-5	date	%	%	Ib/A		bu/A		bu/A	1-5	date	%	%	Ib/A	bu/A	
Asgrow	AG 1802	1.8	65	1.0	18-Sep	33.1	19.8	2057	78	67	49								
Asgrow	AG 2002	2.0	63	1.0	22-Sep	33.9	19.3	1999	74	62	52	67	2.0	19-Sep	34.8	19.4	2177	65	
Asgrow	AG 2108	2.1	65	1.0	23-Sep	32.8	19.5	2040	73	66	56								
Asgrow	AG 2406	2.4	* 68	1.0	23-Sep	33.5	19.9	2175	* 80	* 68	56	68	1.3	18-Sep	35.2	19.7	2256	68	1
Asgrow	AG 2606	2.6	65	1.0	27-Sep	35.7	17.6	2073	71	67	56	67	1.3	25-Sep	36.8	17.7	2183	66	1
	DT 0000													10.0					-
Croplan	RT 2092	2.0	61	1.0	22-Sep	32.7	19.4	1909	74	60	49	* 70	1.1	18-Sep	34.5	19.7	2256	65	L
Croplan	RT 2117	2.1	65	1.0	16-Sep	34.8	19.1	2093	73	64	58								-
Croplan	RC 2287	2.2	59	1.0	23-Sep	33.1	18.9	1848	67	62	49	* 70	10	10.045	24.4	10.7	0054	67	L
Croplan	RT 2292	2.2	64	1.0	20-Sep	32.6	19.6	2008	72	65	56	* 70	1.3	18-Sep	34.1	19.7	2251	67	1
Croplan	RC 2517	2.0	62	1.0	26-Sep	33.7	18.4	1958	68	65	54								H
Crow's	C 2430 R	2.4	60	1.0	25-Sep	33.4	18.9	1881	66	58	56								E
Crow's	C 2918 R	2.9	62	1.1	3-0ct	32.9	19.0	1929	67	64	55								E
Dahlco	8210 NRR	2.1	63	1.0	23-Sep	32.7	19.7	1976	74	66	50								
Dairyland	DSR-2200/RR	2.2	* 68	1.0	27-Sep	33.8	19.0	2145	72	* 72	* 59	* 70	1.6	20-Sep	34.8	19.6	2278	* 69	
Dairyland	DSR-2300/RR	2.3	66	1.1	27-Sep	33.1	19.0	2069	75	66	58	67	2.0	26-Sep		19.6	2189	67	
Dairyland	DST25-002/RR	2.5	* 68	1.1	27-Sep	33.9	18.9	2157	* 80	* 68	56								
Dairyland	DSR-2770/RR	2.7	* 70	1.2	30-Sep	34.2	18.8	2213	* 80	* 73	56								
FS HISOY	R08-20	2,2	-																
FS HISOY	HS 2166	2. Sor	t											? 🔀	35.4	19.4	2331	67	
FS HiSOY	HS 22R70	2.							1000						33.8	20.0	2302	68	
			t Add Le		elete Leve		Copy L	evel		Options	•	M	ly data has <u>k</u>	neaders					
FS HISOY	HS 23R71	2.	lumn			So	rt On				Order								-
FS HISOY	R08-26	Z		aluma C															-
FS HiSOY	HS 2766	4		olumn C		Va Va	lues			*	A to Z			~	34.4	19.8	2252	* 69	-
G2 Genetics	7226 7255	2.																	-
G2 Genetics	7255	2.																	-
G2 Genetics	7288	2																	L
G2 Genetics	327	2.													35.1	19.4	2345	* 69	
Hughes Hughes	555	2.													35.1	19.4	2345	* 71	-
Hughes	668	2.													50.0	10.9	2493	- 11	H
Hughes	777	2																	E
Continued											F	OK							
Kaltenberg	KB 2309 RR	2									L	OK	Car	icei					
Kaltenberg	KB 2409 RR	2.4	62	1.0	24-Sep	33.8	19.3	1974	74	60	52								
Kaltenberg	KB 249 RR	2.4	64	1.0	26-Sep	34.3	18.6	2019	72	63	56	* 70	1.8	22-Sep	35.2	19.0	2285	67	
Kaltenberg	KB 2609 RR	2.6	67	1.1	27-Sep	32.8	19.2	2076	* 80	62	58								
Kaltenberg	KB 278 RR	2.7	64	1.2	27-Sep	32.9	19.0	2005	72	63	58								
► H 1-Gen		- Central 🏑		-Central	5-North		rly_WI		te WM	8-SCN		nvention	al / 🞾 /						

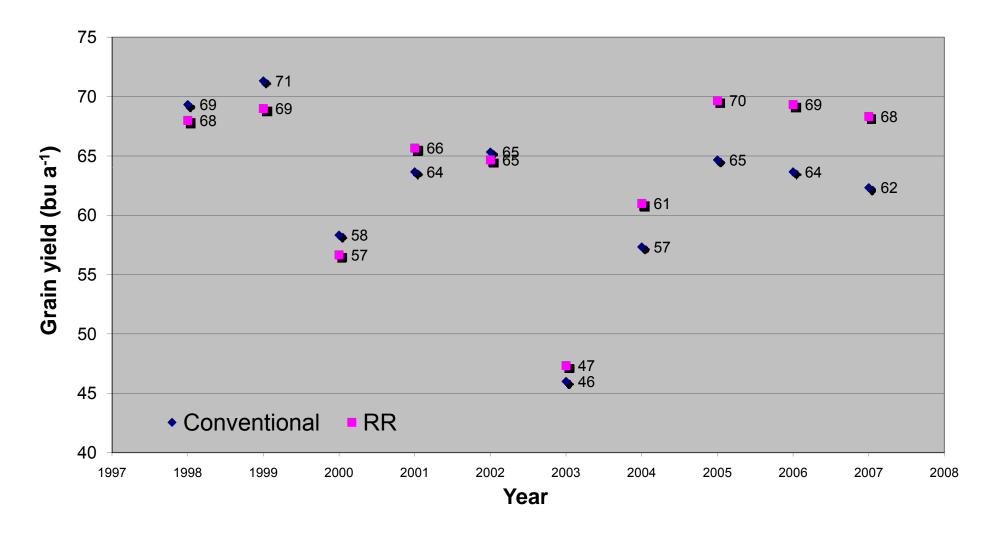
Importance of Variety Selection

 Rank the importance of the following factors in selecting a soybean variety? (1 to 5)

Factor	Importance
Yield potential	1.4
Disease resistance	1.5
RR trait (+ or -)	1.7
Dealer recommendations	2.1
Personnel relationship w/company	2.7
Seed price	2.7
Grain quality trait	3.3
Specialty market	3.8

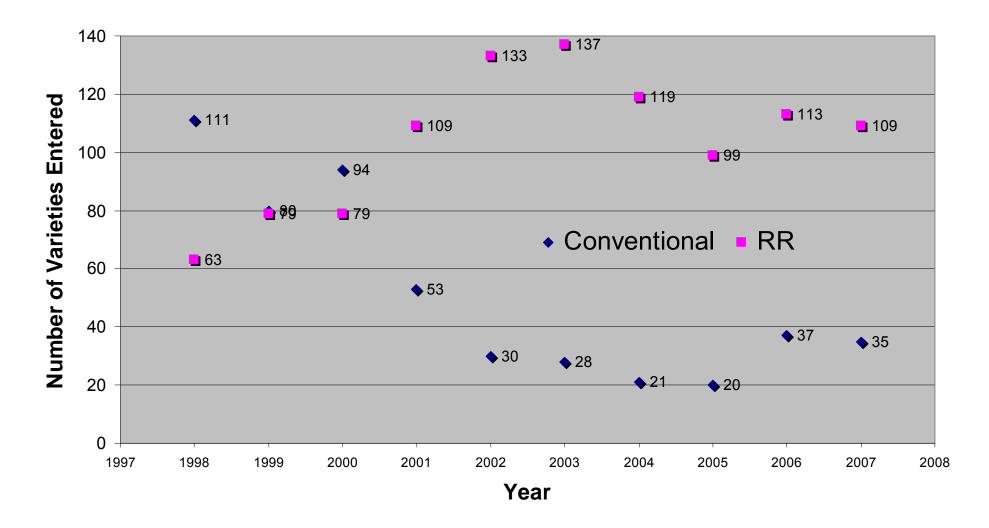

- Average number of soybean varieties planted: 2.3
- Average number of corn hybrids planted: 4.6 Coverage

Comparison of Conventional vs. Traited Soybeans


Comparison of Conventional vs. Traited Soybeans

- Seed price will be a large driver of seed sales in 2010.
 - Preliminary quotes on base seed price (quoted prices before discounts and programs) have ranged from the high \$30's (conventional) to the mid-\$70's (RR2Y®) on a per bag basis.
- Since 2003, we have seen a divergence in yield potential between conventional and Roundup Ready (RR®).
- To further characterize these yield differences and test the yield potential of LL® soybean, we added several high yielding RR® and LL® soybean varieties as checks into our conventional trials in 2009
- Our RR® trials also had several RR2Y® varieties entered in 2009 to allow for this new trait comparison.

2010 Soybean Seed Price Distribution



Conventional vs. RR Yields 1998 - 2007

UW S. Variety Test

Conventional vs. RR Varieties 1998 - 2007

UW S. Variety Test

SOUTHERN CONVENTIONAL AND TRAITED HERBICIDE SOYBEAN TEST (TABLE 9. page 19.)

Originator/Brand Entry Group Toler. plus plus Dil/A blu/A % blu/A blu/A % blu/A blu/A % blu/A blu/A % blu/A % blu/A % blu/A % blu/A % </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>200</th> <th>09 2-Test</th> <th>Average</th> <th>9</th> <th></th> <th></th> <th>200</th> <th></th>						200	09 2-Test	Average	9			200	
Originator/Brad Entry Group Toler. plus Oil Tyleld WM* Public MN 0302 0.3 CN 38 1.5 9-Sep 36.4 18.4 124.4 600 0 6 Public Hamlin 0.9 CN 46 1.8 19-Sep 36.0 17.4 1528 63.0 2.9 Public Surge 0.9 CN 46 2.3 15-Sep 37.9 17.7 1509 62 13 2.9 Public MN 1005 1.0 CN 43 3.0 19-Sep 35.1 18.6 134.4 54 6 9 35 Public MN 1410 1.4 CN *50 2.3 23-Sep 35.1 18.4 155 95 18.0 14.4 58 15 32 Public IA 1006 1.6 CN 45 1.4 25 28-Sep 35.5 18.0 1712 65 16 25<			Maturity	Herb.1	Yield	Lodging	Maturity	Protein	Oil	Protein			LAN ³
buik buik 1-5 date % <t< td=""><td>Originator/Brand</td><td>Entry</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>plus Oil</td><td>Yield</td><td>WM</td><td>2</td></t<>	Originator/Brand	Entry								plus Oil	Yield	WM	2
Public Hamin 0.9 CN 46 1.8 19-Sep 38.0 17.4 1528 63 4 29 Public Surge 0.9 CN 46 2.3 15-Sep 35.7 17.7 1509 62 13 29 Public SD 02-833 1.1 CN 46 3.0 19-Sep 35.7 18.3 1474 56 9 35 Public MN 1410 1.4 CN * 50 2.3 23-Sep 36.1 18.4 1633 * 66 9 34 Public IA 1006 1.6 CN 45 2.6 26-Sep 35.0 18.1 1442 58 15 32 Public IA 1002 1.9 CN 45 1.4 25-Sep 36.0 18.0 1457 61 6 28 Public IA 2076 2.0 CN * 54 2.4 30-Sep 35.1 17.5 1616 60 <td< td=""><td>-</td><td></td><td></td><td></td><td>bu/A</td><td>1-5</td><td>date</td><td>%</td><td>%</td><td></td><td></td><td></td><td>bu/A</td></td<>	-				bu/A	1-5	date	%	%				bu/A
Public Surge 0.9 CN 46 2.3 15-Sep 37.9 17.7 1509 62 13 29 Public MN 1005 1.0 CN 43 3.0 19-Sep 35.1 18.6 1354 54 6 31 Public MN 1410 1.4 CN 46 3.0 19-Sep 35.7 18.3 1474 56 9 35 Public MN 1410 1.4 CN *50 2.3 23-Sep 36.1 18.4 1633 *66 9 34 Public MN 1701 CN 1.7 CN *48 2.5 28-Sep 36.0 18.0 1457 61 6 28 Public IA 1008 BC 1.9 CN 47 2.0 24-Sep 36.1 18.0 1457 61 6 25 42 Public IA 2076 2.0 CN *51 2.1 27-Sep 35.1 17.5 1	Public	MN 0302	0.3	CN	38	1.5	9-Sep	36.4	18.4	1234	60	0	16
Public MN 1005 1.0 CN 43 3.0 19-Sep 35.1 18.6 1354 54 6 31 Public MN 1410 1.4 CN *50 2.3 23-Sep 36.1 18.4 1633 *66 9 34 Public IA 1006 1.6 CN 45 2.6 26-Sep 35.0 18.1 1444 58 15 32 Public IA 1006 1.6 CN 45 2.8-Sep 36.0 18.0 1457 61 6 28 Public IA 1022 1.9 CN 47 2.0 24-Sep 35.1 17.7 51616 60 25 42 Public IA 2076 2.0 CN *54 2.4 30-Sep 35.5 18.0 1712 65 14 42 Public IA 2076 2.0 CN *58 2.0 1-0ct 35.1 17.7 1748 155	Public	Hamlin	0.9	CN	46	1.8	19-Sep	38.0	17.4	1528	63	4	29
Public SD 02-833 1.1 CN 46 3.0 19-Sep 35.7 18.3 1474 56 9 35 Public MN 1410 1.4 CN *50 2.3 23-Sep 36.1 18.4 1633 *66 9 34 Public IA 1006 1.6 CN 45 2.6 26-Sep 35.7 18.2 1562 58 14 48 Public IA 1008 BC 1.9 CN 45 1.4 25-Sep 36.0 18.0 1457 61 6 28 Public IA 1022 1.9 CN 47 2.0 24-Sep 35.5 18.0 1712 65 14 42 Public IA 2076 2.0 CN *54 2.4 30-Sep 35.5 18.0 1712 65 14 42 Public AG 2108 2.1 RR *58 2.0 1-Oct 34.1 17.8 188 <t< td=""><td>Public</td><td>Surge</td><td>0.9</td><td>CN</td><td>46</td><td>2.3</td><td>15-Sep</td><td>37.9</td><td>17.7</td><td>1509</td><td>62</td><td>13</td><td>29</td></t<>	Public	Surge	0.9	CN	46	2.3	15-Sep	37.9	17.7	1509	62	13	29
Public NN 1410 1.4 CN * 50 2.3 23-Sep 36.1 18.4 1633 * 66 9 34 Public MN 1701 CN 1.7 CN * 45 2.6 26-Sep 35.7 18.2 1562 58 14 38 23-Sep 36.1 18.4 1633 * 66 9 34 Public MN 1701 CN 1.7 CN * 48 2.5 28-Sep 35.7 18.2 1562 58 14 38 Public IA 1002 1.9 CN 45 1.4 25-Sep 36.0 18.0 1457 61 6 28 Public IA 2076 2.0 CN * 54 2.4 30-Sep 35.5 18.0 1712 65 14 42 Asgrow AG 2108 2.1 RR * 58 2.0 1-0ct 35.6 17.7 1748 52 5 50 18.1 1758 166 60 25 441 Blue River 2A71 2.7 CN * 55 2.9	Public	MN 1005	1.0	CN	43	3.0	19-Sep	35.1	18.6	1354	54	6	31
Public IA 1006 1.6 CN 45 2.6 26-Sep 35.0 18.1 1444 58 15 32 Public IA 1008 BC 1.7 CN *48 2.5 28-sep 35.7 18.2 1562 58 14 38 Public IA 1022 1.9 CN 47 2.0 24-Sep 38.0 19.5 1513 59 8 35 Public IA 2076 2.0 CN *54 2.4 30-Sep 35.5 18.0 1712 65 14 42 Public IA 2076 2.0 CN *54 2.4 30-Sep 35.1 17.5 1616 60 25 42 Asgrow AG 2108 2.1 RR *58 2.0 1-Oct 35.1 17.7 1748 52 5 57 Dairyland DSR-2118 2.1 CN *50 1.4 1-Oct 35.1 19.1 1603	Public	SD 02-833	1.1	CN	46	3.0	19-Sep	35.7	18.3	1474	56	9	35
Public MN 1701 CN 1.7 CN 48 2.5 28-Sep 35.7 18.2 1562 58 14 38 Public IA 1008 BC 1.9 CN 45 1.4 25-sep 38.0 18.0 1457 61 6 28 Public IA 1022 1.9 CN 47 2.0 24-Sep 33.8 19.5 1513 59 8 35 Public IA 2076 2.0 CN *54 2.4 30-Sep 35.5 18.0 1712 65 14 42 Asgrow AG 2108 2.1 RR *58 2.3 24-Sep 36.1 17.8 1708 64 5 41 Blue River 2A71 2.7 CN *55 2.9 9-Oct 35.6 17.7 1748 52 5 57 Dairyland DSR-2118 2.1 CN *50 1.4 1-Oct 35.1 19.1 1603	Public	MN 1410	1.4	CN	* 50	2.3	23-Sep	36.1	18.4	1633	* 66	9	34
Public IA 1008 BC 1.9 CN 45 1.4 25-Sep 36.0 18.0 1457 61 6 28 Public IA 1022 1.9 CN 47 2.0 24-Sep 33.8 19.5 1513 59 8 35 Public SD 02-22 2.2 CN *51 2.1 27-Sep 35.1 17.5 1616 60 25 42 Asgrow AG 2108 2.1 RR *58 2.0 1-Oct 34.4 184.5 1815 65 15 50 Blue River 2A12 2.1 CN *53 2.3 24-Sep 36.1 17.8 1708 64 5 41 Dairyland DSR-2118 2.1 CN *50 1.4 1-Oct 35.1 19.1 1603 58 4 41 Dairyland DSR-2216 2.2 CN *50 1.4 1-Oct 35.1 19.1 1603 56 5.5 53 Dairyland DSR-2215 2.2 CN <t< td=""><td>Public</td><td>IA 1006</td><td>1.6</td><td>CN</td><td>45</td><td>2.6</td><td>26-Sep</td><td>35.0</td><td>18.1</td><td>1444</td><td>58</td><td>15</td><td>32</td></t<>	Public	IA 1006	1.6	CN	45	2.6	26-Sep	35.0	18.1	1444	58	15	32
Public IA 1022 1.9 CN 47 2.0 24-Sep 33.8 19.5 1513 59 8 35 Public IA 2076 2.0 CN * 54 2.4 30-Sep 35.5 18.0 1712 65 14 42 Public SD 02-22 2.2 CN * 51 2.1 27-Sep 35.1 17.5 1616 60 25 42 Asgrow AG 2108 2.1 RR * 58 2.0 1-Oct 34.4 184 1815 65 15 50 Blue River 2A71 2.7 CN * 55 2.9 9-Oct 35.6 17.7 1748 52 5 * 57 Dairyland DSR-2118 2.1 CN * 50 1.4 1-Oct 35.1 19.1 1603 58 4 41 Dairyland DSR-210/RR 2.2 RR * 56 2.0 6-Oct 35.0 18.1 1754 58 5 53 Dairyland DSR-2100/RR 2.2 RR	Public	MN 1701 CN			* 48	2.5	28-Sep	35.7				14	
Public IA 2076 2.0 CN * 54 2.4 30-Sep 35.5 18.0 1712 65 14 42 Public SD 02-22 2.2 CN * 51 2.1 27-Sep 35.1 17.5 1616 60 25 42 Asgrow AG 2108 2.1 R * 58 2.0 1-Oct 34.4 18.4 1815 65 15 50 Blue River 2A12 2.1 CN * 53 2.3 2.4-Sep 36.1 17.8 1708 64 5 41 Blue River 2A71 2.7 CN * 55 2.9 9-Oct 35.6 17.7 1748 52 5 57 Dairyland DSR-2118 2.1 CN * 50 1.4 1-Oct 35.1 19.1 1603 58 4 41 Dairyland DSR-2200/RR 2.2 RR * 56 2.0 6-Oct 35.0 18.1 1754 58 5 53 Dairyland DSR-220/RR 2.2 CN	Public	IA 1008 BC	1.9	CN	45	1.4	25-Sep	36.0	18.0	1457	61	6	
Public SD 02-22 2.2 CN * 51 2.1 27-Sep 35.1 17.5 1616 60 25 42 Asgrow AG 2108 2.1 RR * 58 2.0 1-Oct 34.4 18.4 1815 65 15 50 Blue River 2A12 2.1 CN * 53 2.3 24-Sep 36.1 17.7 17.48 17.8 1708 64 5 41 Blue River 2A71 2.7 CN * 55 2.9 9-Oct 35.6 17.7 1748 52 5 * 57 Dairyland DSR-2118 2.1 CN * 50 1.4 1-Oct 35.1 19.1 1603 58 4 41 Dairyland DSR-2215 2.2 CN * 50 1.8 4-Oct 34.9 18.2 1591 60 14 39 PS HiSOY L09-23 2.3 LL * 58 1.6 7-Oct 33.6 18.7 1837 62 5 56 NK Brand S21-N6 Brand<	Public	IA 1022	1.9	CN	47	2.0	24-Sep	33.8	19.5	1513	59	8	35
Asgrow AG 2108 2.1 RR * 58 2.0 1-Oct 34.4 18.4 1815 65 15 50 Blue River 2A12 2.1 CN * 53 2.3 24-Sep 36.1 17.8 1708 64 5 41 Blue River 2A71 2.7 CN * 55 2.9 9-Oct 35.6 17.7 1748 52 5 * 57 Dairyland DSR-2118 2.1 CN * 50 1.4 1-Oct 35.1 19.1 1603 58 4 41 Dairyland DSR-2200/RR 2.2 RR * 56 2.0 6-Oct 35.0 18.1 1754 58 5 * 53 Dairyland DSR-2215 2.2 CN * 56 1.6 7-Oct 36.2 17.7 1887 * 66 14 50 FS HISOY L 09-23 2.3 LL * 58 1.6 7-Oct 36.2 17.7 1887 * 66 14 50 O'Brien O'Soy 108C 1.8 <t< td=""><td>Public</td><td>IA 2076</td><td>2.0</td><td>CN</td><td>* 54</td><td>2.4</td><td>30-Sep</td><td>35.5</td><td>18.0</td><td>1712</td><td>65</td><td>14</td><td>42</td></t<>	Public	IA 2076	2.0	CN	* 54	2.4	30-Sep	35.5	18.0	1712	65	14	42
Blue River 2A12 2.1 CN * 53 2.3 24-Sep 36.1 17.8 1708 64 5 41 Blue River 2A71 2.7 CN * 55 2.9 9-Oct 35.6 17.7 1748 52 5 * 57 Dairyland DSR-2118 2.1 CN * 50 1.4 1-Oct 35.6 17.7 1748 52 5 * 57 Dairyland DSR-2200/RR 2.2 RR * 56 2.0 6-Oct 35.0 18.1 1754 58 5 * 53 Dairyland DSR-2215 2.2 CN * 50 1.8 4-Oct 34.9 18.2 1591 60 14 39 FS HISOY L 09-23 2.3 LL * 58 1.6 7-Oct 36.2 17.7 1887 * 66 14 50 FS HISOY HS 25L80 2.6 LL * 59 2.3 7-Oct 33.6 18.7 1837 62 5 * 56 O'Brien O'Soy 108C 1.8	Public	SD 02-22	2.2	CN				35.1			60		
Blue River 2A71 2.7 CN * 55 2.9 9-Oct 35.6 17.7 1748 52 5 * 57 Dairyland DSR-2118 2.1 CN * 50 1.4 1-Oct 35.1 19.1 1603 58 4 41 Dairyland DSR-2200/RR 2.2 RR * 50 1.4 1-Oct 35.1 19.1 1603 58 4 41 Dairyland DSR-2215 2.2 CN * 50 1.8 4-Oct 34.9 18.2 1591 60 14 39 Dairyland DSR-2213 2.3 LL * 59 2.3 7-Oct 36.2 17.7 1887 * 66 14 39 PS HISOY HS 25L80 2.6 LL * 59 2.3 7-Oct 33.6 18.7 1837 62 5 * 56 O'Brien O'Soy 108C 1.8 CN 46 2.3 24-Sep 34.1 19.1	Asgrow	AG 2108	2.1			2.0	1-Oct	34.4	18.4		65	15	
Dairyland DSR-2118 2.1 CN * 50 1.4 1-Oct 35.1 19.1 1603 58 4 41 Dairyland DSR-2200/RR 2.2 RR * 56 2.0 6-Oct 35.0 18.1 1754 58 5 * 53 Dairyland DSR-2215 2.2 CN * 50 1.8 4-Oct 34.9 18.2 1591 60 14 39 FS HISOY L 09-23 2.3 LL * 58 1.6 7-Oct 36.2 17.7 1887 * 66 14 50 FS HISOY HS 25L80 2.6 LL * 59 2.3 7-Oct 33.6 18.7 1837 62 5 * 56 NK Brand S21-N6 Brand 2.1 RR * 56 1.6 28-Sep 34.1 19.1 1764 * 72 4 39 O'Brien O'Soy 108C 1.8 CN 46 2.3 24-Sep 35.3 18.4	Blue River												
Dairyland DSR-2200/RR 2.2 RR * 56 2.0 6-Oct 35.0 18.1 1754 58 5 * 53 Dairyland DSR-2215 2.2 CN * 50 1.8 4-Oct 34.9 18.2 1591 60 14 39 FS HiSOY L 09-23 2.3 LL * 58 1.6 7-Oct 36.2 17.7 1887 * 66 14 50 FS HiSOY HS 25L80 2.6 LL * 59 2.3 7-Oct 36.6 18.7 1837 62 5 * 56 NK Brand S21-N6 Brand 2.1 RR * 56 1.6 28-Sep 34.1 19.1 1764 * 72 4 39 O'Brien O'Soy 108C 1.8 CN 46 2.3 24-Sep 34.2 19.3 1477 59 10 33 O'Brien O'Soy 183LL 1.8 LL 46 1.8 25-Sep 35.3 18.	Blue River	2A71	2.7	CN	* 55	2.9	9-Oct	35.6	17.7	1748	52	5	* 57
Dairyland DSR-2215 2.2 CN * 50 1.8 4-Oct 34.9 18.2 1591 60 14 39 FS HiSOY L 09-23 2.3 LL * 58 1.6 7-Oct 36.2 17.7 1887 * 66 14 50 FS HiSOY HS 25L80 2.6 LL * 59 2.3 7-Oct 33.6 18.7 1837 62 5 * 56 NK Brand S21-N6 Brand 2.1 RR * 56 1.6 28-Sep 34.1 19.1 1764 * 72 4 39 O'Brien O'Soy 108C 1.8 CN 46 2.3 24-Sep 34.2 19.3 1477 59 10 33 O'Brien O'Soy 183LL 1.8 LL 46 1.8 25-Sep 35.3 18.4 1475 61 10 30 Renk RS 230NLL 2.3 LL * 60 1.8 7-Oct 36.1 17.7 1936 * 69 9 51 Viking O.1706N 1.7 <	Dairyland	DSR-2118	2.1	CN	* 50	1.4	1-Oct	35.1	19.1	1603	58	4	41
FS HISOY L 09-23 2.3 LL * 58 1.6 7-Oct 36.2 17.7 1887 * 66 14 50 FS HISOY HS 25L80 2.6 LL * 59 2.3 7-Oct 33.6 18.7 1837 * 66 14 50 NK Brand S21-N6 Brand 2.1 RR * 56 1.6 28-Sep 34.1 19.1 1764 * 72 4 39 O'Brien O'Soy 108C 1.8 CN 46 2.3 24-Sep 34.2 19.3 1477 59 10 33 O'Brien O'Soy 183LL 1.8 LL 46 1.8 25-Sep 35.3 18.4 1475 61 10 30 Renk RS 230NLL 2.3 LL * 60 1.8 7-Oct 36.1 17.7 1936 * 66 19 43 Viking 0.1692 1.6 CN * 55 1.5 19-Sep 35.0 18.3 1743 * 66 19 43 Viking 0.2078N 2.0 <	Dairyland	DSR-2200/RR				2.0						5	
FS HISOY HS 25L80 2.6 LL * 59 2.3 7-Oct 33.6 18.7 1837 62 5 * 56 NK Brand S21-N6 Brand 2.1 RR * 56 1.6 28-Sep 34.1 19.1 1764 * 72 4 39 O'Brien O'Soy 108C 1.8 CN 46 2.3 24-Sep 34.2 19.3 1477 59 10 33 O'Brien O'Soy 183LL 1.8 LL 46 1.8 25-Sep 35.3 18.4 1475 61 10 30 Renk RS 230NLL 2.3 LL * 60 1.8 7-Oct 36.1 17.7 1936 * 69 9 51 Viking O.1692 1.6 CN * 55 1.5 19-Sep 35.0 18.3 1743 * 66 19 43 Viking O.2078N 2.0 CN 46 2.4 22-Sep 35.2 18.2 1454 59 18 32 Viking O.2078N 2.0 CN </td <td>Dairyland</td> <td></td>	Dairyland												
NK Brand S21-N6 Brand 2.1 RR * 56 1.6 28-Sep 34.1 19.1 1764 * 72 4 39 O'Brien O'Soy 108C 1.8 CN 46 2.3 24-Sep 34.2 19.3 1477 59 10 33 O'Brien O'Soy 183LL 1.8 LL 46 1.8 25-Sep 35.3 18.4 1475 61 10 30 Renk RS 230NLL 2.3 LL * 60 1.8 7-Oct 36.1 17.7 1936 * 69 9 51 Viking O.1692 1.6 CN * 51 1.9 22-Sep 34.6 18.1 1608 * 68 10 34 Viking O.1706N 1.7 CN * 55 1.5 19-Sep 35.0 18.3 1743 * 66 19 43 Viking O.2078N 2.0 CN * 51 1.4 25-Sep 35.8 17.8													
O'Brien O'Soy 108C 1.8 CN 46 2.3 24-Sep 34.2 19.3 1477 59 10 33 O'Brien O'Soy 108C 1.8 LL 46 1.8 25-Sep 35.3 18.4 1475 61 10 30 O'Brien O'Soy 183LL 1.8 LL 46 1.8 25-Sep 35.3 18.4 1475 61 10 30 Renk RS 230NLL 2.3 LL * 60 1.8 7-Oct 36.1 17.7 1936 * 69 9 51 Viking O.1692 1.6 CN * 51 1.9 22-Sep 34.6 18.1 1608 * 68 10 34 Viking O.1706N 1.7 CN * 55 1.5 19-Sep 35.0 18.3 1743 * 66 19 43 Viking O.2078N 2.0 CN 46 2.4 22-Sep 35.2 18.2 14	FS HISOY	HS 25L80	2.6	LL	* 59	2.3	7-Oct	33.6	18.7	1837	62	5	* 56
O'Brien O'Soy 183LL 1.8 LL 46 1.8 25-Sep 35.3 18.4 1475 61 10 30 Renk RS 230NLL 2.3 LL * 60 1.8 7-Oct 36.1 17.7 1936 * 69 9 51 Viking 0.1692 1.6 CN * 51 1.9 22-Sep 34.6 18.1 1608 * 68 10 34 Viking 0.1706N 1.7 CN * 55 1.5 19-Sep 35.0 18.3 1743 * 66 19 43 Viking 2020N 2.0 CN 46 2.4 22-Sep 35.2 18.2 1454 59 18 32 Viking 0.2078N 2.0 CN * 51 1.4 25-Sep 35.8 17.8 1624 57 16 44 Viking 0.2265 2.2 CN * 54 2.0 29-Sep 35.0 18.2 1707	NK Brand											4	
Renk RS 230NLL 2.3 LL * 60 1.8 7-Oct 36.1 17.7 1936 * 69 9 51 Viking O.1692 1.6 CN * 51 1.9 22-Sep 34.6 18.1 1608 * 68 10 34 Viking O.1706N 1.7 CN * 55 1.5 19-Sep 35.0 18.3 1743 * 66 19 43 Viking 2020N 2.0 CN 46 2.4 22-Sep 35.2 18.2 1454 59 18 32 Viking O.2078N 2.0 CN * 51 1.4 25-Sep 35.8 17.8 1624 57 16 44 Viking O.2265 2.2 CN * 54 2.0 29-Sep 35.0 18.2 1707 * 67 11 40	O'Brien												
Viking O.1692 1.6 CN * 51 1.9 22-Sep 34.6 18.1 1608 * 68 10 34 Viking O.1706N 1.7 CN * 55 1.5 19-Sep 35.0 18.3 1743 * 66 19 43 Viking 2020N 2.0 CN 46 2.4 22-Sep 35.2 18.2 1454 59 18 32 Viking O.2078N 2.0 CN * 51 1.4 25-Sep 35.8 17.8 1624 57 16 44 Viking O.2265 2.2 CN * 54 2.0 29-Sep 35.0 18.2 1707 * 67 11 40 Mean 50 2.1 26-Sep 35.4 18.2 1613 62 10 39	O'Brien												
Viking O.1706N 1.7 CN * 55 1.5 19-Sep 35.0 18.3 1743 * 66 19 43 Viking 2020N 2.0 CN 46 2.4 22-Sep 35.2 18.2 1454 59 18 32 Viking O.2078N 2.0 CN * 51 1.4 25-Sep 35.8 17.8 1624 57 16 44 Viking O.2265 2.2 CN * 54 2.0 29-Sep 35.0 18.2 1707 * 67 11 40 Mean 50 2.1 26-Sep 35.4 18.2 1613 62 10 39	Renk											-	
Viking 2020N 2.0 CN 46 2.4 22-Sep 35.2 18.2 1454 59 18 32 Viking O.2078N 2.0 CN * 51 1.4 25-Sep 35.8 17.8 1624 57 16 44 Viking O.2265 2.2 CN * 54 2.0 29-Sep 35.0 18.2 1707 * 67 11 40 Mean 50 2.1 26-Sep 35.4 18.2 1613 62 10 39	Viking	O.1692	1.6	CN	* 51	1.9	22-Sep	34.6	18.1	1608	* 68	10	34
Viking O.2078N 2.0 CN * 51 1.4 25-Sep 35.8 17.8 1624 57 16 44 Viking O.2265 2.2 CN * 54 2.0 29-Sep 35.0 18.2 1707 * 67 11 40 Mean 50 2.1 26-Sep 35.4 18.2 1613 62 10 39	Viking												
Viking O.2265 2.2 CN * 54 2.0 29-Sep 35.0 18.2 1707 * 67 11 40 Mean 50 2.1 26-Sep 35.4 18.2 1613 62 10 39	Viking												
Mean <u>50</u> 2.1 26-Sep 35.4 18.2 1613 62 10 39	Viking												
	Viking	O.2265	2.2	CN	* 54	2.0	29-Sep	35.0	18.2	1707	* 67	11	40
LSD(0.10) 12 1.1 7 1.1 0.9 390 6 ns 5	Mean												
	LSD(0.10)				12	1.1	7	1.1	0.9	390	6	ns	5

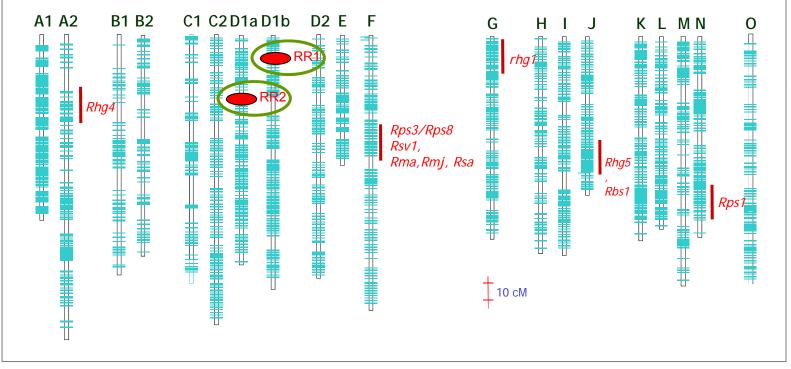
NORTH-CENTRAL CONVENTIONAL AND TRAITED HERBICIDE SOYBEAN TEST (TABLE 10. page 20.)

						2009)		
		Maturity	Herb. ¹	Yield	Lodging	Maturity	Protein	Oil	Protein
Originator/Brand	Entry	Group	Toler.						plus Oil
				bu/A	1-5	date	%	%	lb/A
Public	MN 0302	0.3	CN	34	1.0	17-Sep	34.6	18.5	1086
Public	MN 1005	1.0	CN	47	1.0	27-Sep	34.0	18.6	1496
Public	Surge	0.9	CN	49	1.0	24-Sep	36.2	17.9	1571
Public	Hamlin	0.9	CN	45	1.0	24-Sep	37.2	17.3	1469
Public	MN 1410	1.4	CN	* 57	1.0	29-Sep	35.2	18.5	1848
Public	MN 1701 CN	1.7	CN	* 54	1.0	6-Oct	35.5	17.5	1721
Public	SD 02-833	1.1	CN	53	1.0	30-Sep	35.2	17.5	1668
Public	IA 1006	1.6	CN	* 58	1.0	3-Oct	34.2	17.9	1818
Public	IA 1022	1.9	CN	50	1.0	4-Oct	32.5	18.9	1544
Asgrow	AG 1506	1.5	RR	50	1.0	3-Oct	33.3	18.5	1543
Blue River	10F8	1.0	CN	42	1.0	27-Sep	34.5	18.6	1337
Blue River	1A24	1.2	CN	46	1.0	13-Oct	35.4	16.7	1433
Blue River	15K9	1.5	CN	44	1.0	6-Oct	36.4	17.6	1433
Blue River	16A7	1.6	CN	45	1.0	27-Sep	34.1	17.5	1400
Dairyland	DSR-1302/RRSTS	1.3	RR/STS	50	1.0	4-Oct	34.6	17.2	1559
NK Brand	S12-P4 Brand	1.2	RR	51	1.0	3-Oct	34.8	17.4	1597
O'Brien	O'Soy 183LL	1.8	LL	47	1.0	18-Oct	34.2	17.7	1464
O'Brien	O'Soy 108C	1.8	CN	51	1.0	5-Oct	32.8	19.0	1591
Renk	RS 170LL	1.7	LL	52	1.0	17-Oct	35.7	16.8	1638
Maan				40	10	0.04	047	47.0	4500
Mean LSD(0.10)				49 4	1.0 ns	2-Oct	34.7 0.4	17.9 0.3	1538 136

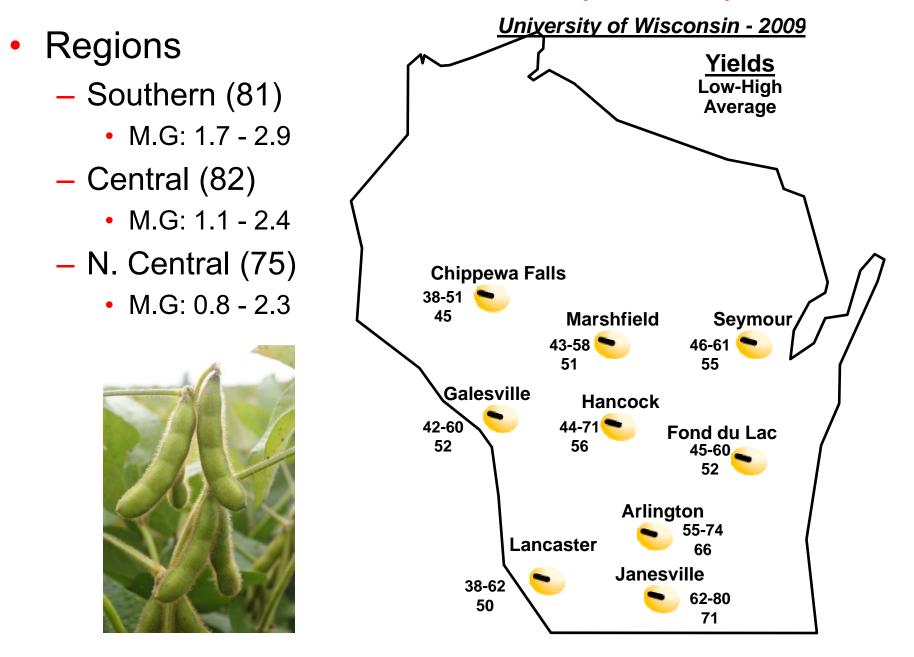
Economics: LL® soybean vs. RR®

Hybrid / Variety	LL	RR1	difference
Seed Price (\$/bag)	\$48.00	\$62.00	-\$14.00
Kernels/Seeds per bag (no./bag)	140,000	140,000	0
Seed Population (number/acre)	165,000	165,000	0
Potential plant death (%)	10	10	0
Acres per bag (acres/bag)	0.77	0.77	0.00
Seed Cost (\$/acre)	\$62.23	\$80.38	-\$18.15
Herbicide Cost (\$/acre)	\$25.00	\$10.20	\$14.80
Insecticide Cost (\$/acre)	\$0.00	\$0.00	\$0.00
Fungicide Cost (\$/acre)	\$0.00	\$0.00	\$0.00
Insurance Cost (\$/acre)	\$0.00	\$0.00	\$0.00
Harvest Moisture (%)	20.0	20.0	0.0
Drying (\$/point*bushel)	<u>\$0.06</u>	<u>\$0.06</u>	<u>\$0.00</u>
Drying Cost (\$/bushel)	\$0.27	\$0.27	\$0.00
Handling Cost (\$/bushel)	\$0.02	\$0.02	\$0.00
Hauling Cost (\$/bushel)	\$0.04	\$0.04	\$0.00
Trucking Cost (\$/bushel)	\$0.11	\$0.11	\$0.00
Storage Cost (\$/bushel)	\$0.12	\$0.12	\$0.00
Yield adjustment (\$/bushel)	\$0.56	\$0.56	\$0.00
Yield adjustment (\$/acre)	\$33.60	\$33.60	\$0.00
Total Input Cost (\$/acre)	\$120.83	\$124.18	\$3.35

Economic advantage (\$/acre) of LL or RR1. Seed price difference = \$14 per bag: A = \$48, RR1 = \$62.

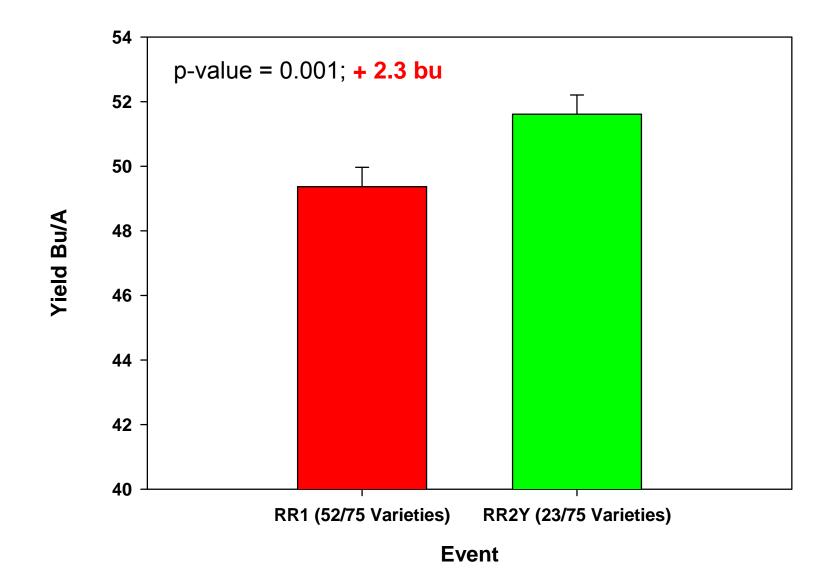

Yield advantage			<u>(</u>	Crop Pr	ice (\$/b	ushel)		
bushel/acre		\$5.00	\$6.00	\$7.00	\$8.00	\$9.00	\$10.00	\$11.00
	7	\$32	\$39	\$46	\$53	\$60	\$67	\$74
	6	\$27	\$33	\$39	\$45	\$51	\$57	\$63
LL	5	\$22	\$27	\$32	\$37	\$42	\$47	\$52
yields less than	4	\$17	\$21	\$25	\$29	\$33	\$37	\$41
RR1	3	\$12	\$15	\$18	\$21	\$24	\$27	\$30
	2	\$7	\$9	\$11	\$13	\$15	\$17	\$19
	1	\$2	\$3	\$4	\$5	\$6	\$7	\$8
LL = RR1	0	\$3	\$3	\$3	\$3	\$3	\$3	\$3
	1	\$8	\$9	\$10	\$11	\$12	\$13	\$14
	2	\$13	\$15	\$17	\$19	\$21	\$23	\$25
LL	3	\$18	\$21	\$24	\$27	\$30	\$33	\$36
yields more than	4	\$23	\$27	\$31	\$35	\$39	\$43	\$47
RR1	5	\$28	\$33	\$38	\$43	\$48	\$53	\$58
	6	\$33	\$39	\$45	\$51	\$57	\$63	\$69
	7	\$38	\$45	\$52	\$59	\$66	\$73	\$80

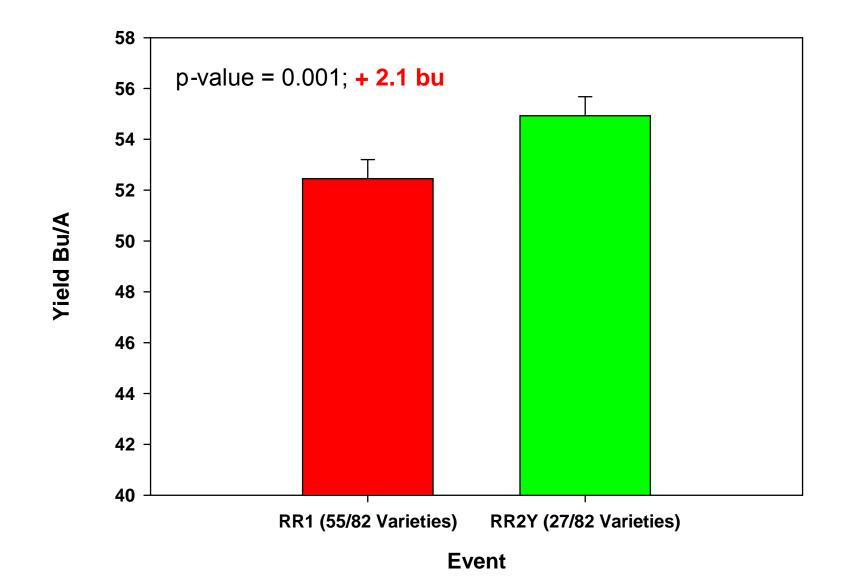
Glyphosate @ \$12 per gal, 32 oz. + Payoff Plus @ 2lbs; x 2

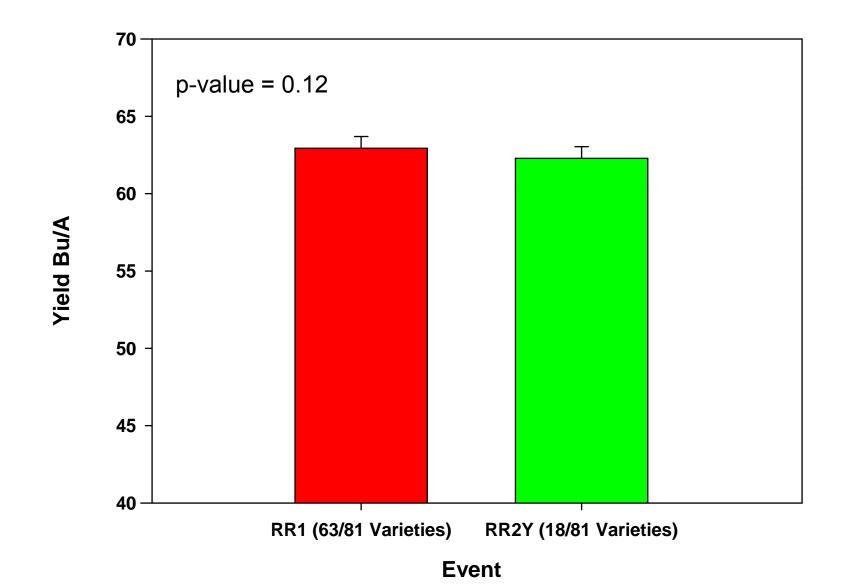

Boundary 6.5 @ \$75.04 per gal 1.5 pts fb Ignite @ \$ 64.26 per gal, 22 oz.

Roundup Ready 2 Yield® Soybeans

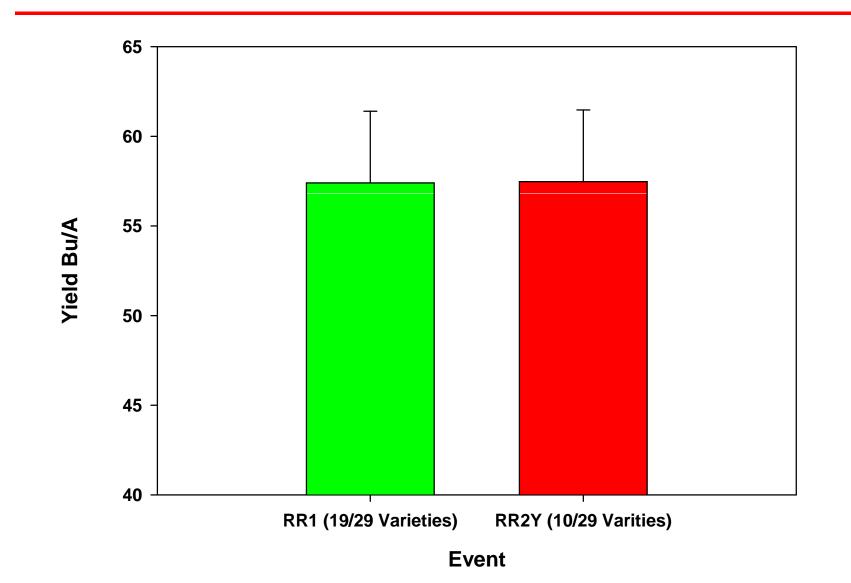
STRATEGY: Use of extensive gene mapping to identify genes that control key agronomic traits; use new breeding procedures and advanced insertion and selection technologies were used to select for these genes; increase rate of genetic gain.

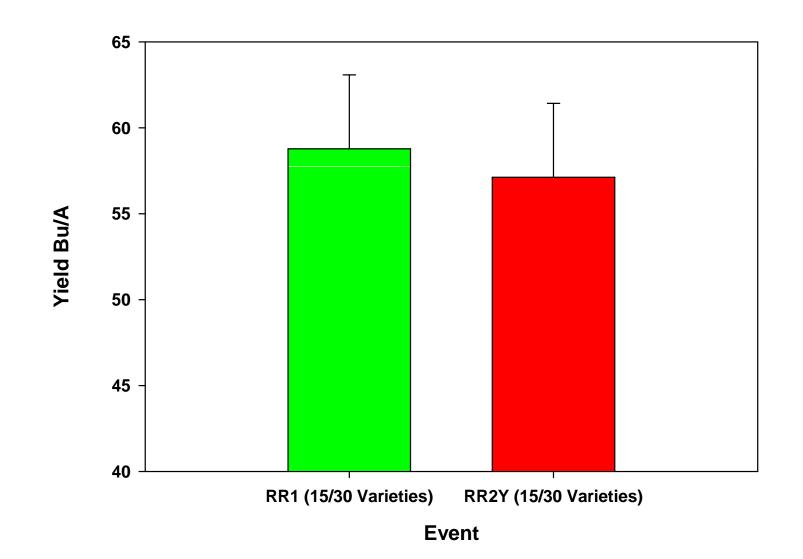

Rhg-SCN resistance; *Rps*-Phytophthora resistance; *Rsv*-Soybean virus resistance; *Rma, Rmj*-Southern root knot nematode resistance; *Rsa*-soybean aphid resistance




RR® vs. RR2Y ® Soybean Variety Test Locations

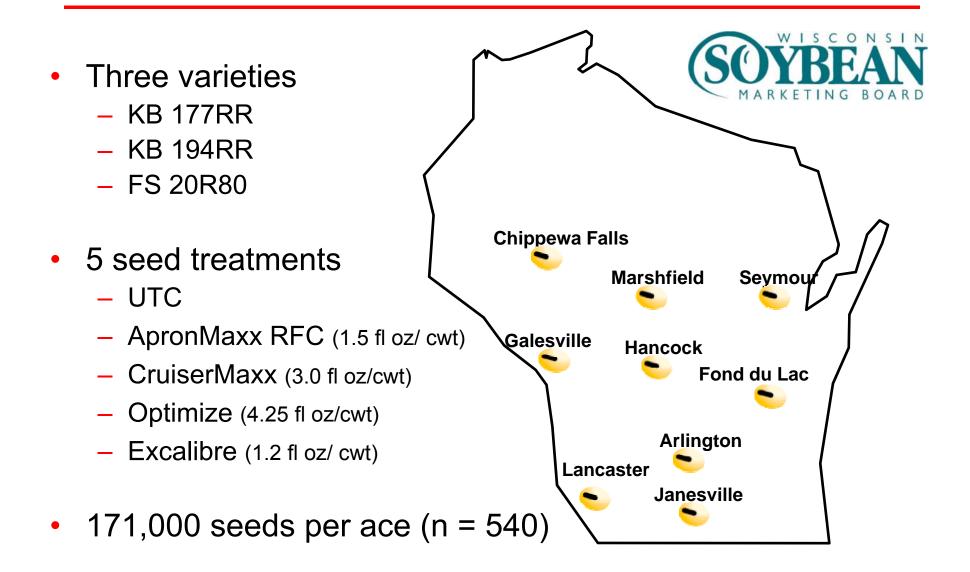
Comparison of RR® vs. RR2Y ® Traits


- Comparing apples to applesauce
 - No access to iso-lines
 - Told they are not being developed
 - Acceleron[™] vs. CruiserMaxx in 09 and beyond
 - CruiserMaxx (Thiamethoxam, mefenoxam, fludioxonil)
 - Acceleron 09 (pyraclostrobin and metalaxyl)
 - Acceleron 10 (pyraclostrobin and metalaxyl, harpin alpha beta protein, imidacloprid)
 - UW and F.I.R.S.T. data
- Mixed model analysis with locations random
 - ddfm- Kenward Rogers (unbalanced data)
 - Multiple varieties over multiple locations

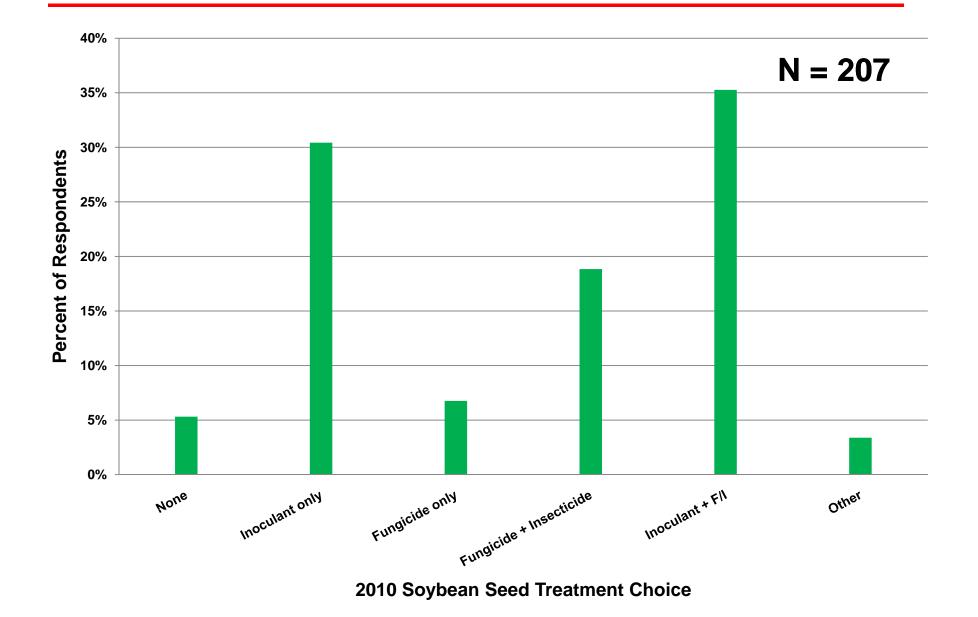


2009 F.I.R.S.T. WI South Average Yields

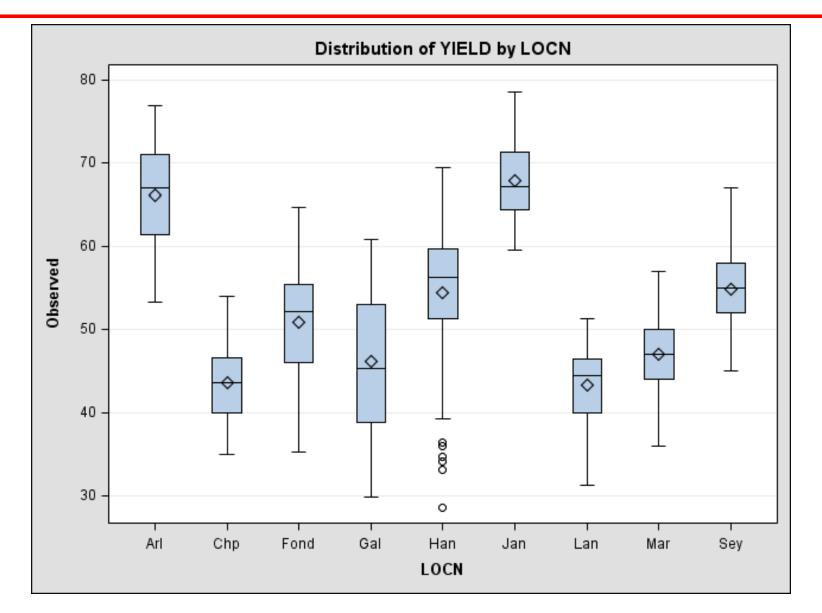
2009 F.I.R.S.T. North Central State Line


Comparison of RR® vs. RR2Y ® Traits

Hybrid / Variety	Variety A	Variety B	Difference																				
Seed Price (\$/bag)	\$62.00	\$75.00	-\$13.00																				
Kernels/Seeds per bag				Economic advant	-	• •		-		-	-	ice											
(no./bag)	140,000	140,000	0	differenc	e = \$	13 per k	bag: A	= \$62, V	/ariety	B = \$7	5.												
Seed Population	165,000	165,000	0	Viold advantage					ioo (¢/h	uchol)													
(number/acre)			0	Yield advantage		¢5 00	_	Crop Pr		\$9.00 \$10.00 \$11.00													
Potential plant death (%)	10	10	0	bushel/acre		\$5.00	\$6.00	\$7.00															
Acres per bag (acres/bag)	0.77	0.77	0.00		7	\$18	\$25	\$32	\$39	\$46	\$53	\$60											
Seed Cost (\$/acre)	\$80.38	\$97.23	-\$16.85		6	\$13	\$19	\$25	\$31	\$37	\$43	\$49											
Herbicide Cost (\$/acre)	\$0.00	\$0.00	\$0.00	Variety A	5	\$8	\$13	\$18	\$23	\$28	\$33	\$38											
Insecticide Cost (\$/acre)	\$0.00	\$0.00	\$0.00	yields less than	4	\$3	\$7	\$11	\$15	\$19	\$23	\$27											
Fungicide Cost (\$/acre)	\$0.00	\$0.00	\$0.00	Variety B	3	\$2	\$1	\$4	\$7	\$10	\$13	\$16											
Insurance Cost (\$/acre)	\$0.00	\$0.00	\$0.00		2	\$7	\$5	\$3	\$1	\$1	\$3	\$5											
					1	\$12	\$11	\$10	\$ 9	\$8	\$7	\$6											
				Variety A = Variety																			
Harvest Moisture (%)	20.0	20.0	0.0	В	0	\$17	\$17	\$17	\$17	\$17	\$17	\$17											
Drying (\$/point*bushel)	<u>\$0.06</u>	<u>\$0.06</u>	<u>\$0.00</u>		1	\$22	\$23	\$24	\$25	\$26	\$27	\$28											
Drying Cost (\$/bushel)	\$0.27	\$0.27	\$0.00		2	\$27	\$29	\$31	\$33	\$35	\$37	\$39											
Handling Cost (\$/bushel)	\$0.02	\$0.02	\$0.00	Variety A	3	\$32	\$35	\$38	\$41	\$44	\$47	\$50											
Hauling Cost (\$/bushel)	\$0.04	\$0.04	\$0.00	yields more than	4	\$37	\$41	\$45	\$49	\$53	\$57	\$61											
Trucking Cost (\$/bushel)	\$0.11	\$0.11	\$0.00	Variety B	5	\$42	\$47	\$52	\$57	\$62	\$67	\$72											
Storage Cost (\$/bushel)	\$0.12	\$0.12	\$0.00	-	6	\$47	\$53	\$59	\$65	\$71	\$77	\$83											
Yield adjustment (\$/bushel)	\$0.56	\$0.56	\$0.00		7	\$52	\$59	\$66	\$73	\$80	\$87	\$94											
Yield adjustment (\$/acre)	\$33.60	\$33.60	\$0.00																				
Total Input Cost (\$/acre)	\$113.98	\$130.83	\$16.85				C	ron (ک اد	ulata	Total Input Cost (\$/acre) \$113.98 \$130.83 \$16.85 Crop Calculator												


Impact of environment on soybean yield response to inoculants and seed treatments

an fill in such that


Experimental Design

2010 Seed Treatment Distribution

Soybean yield response to seed treatments: Distribution of yield by location

Probability of achieving a net return (NR) equal to the break-even point or return on investment (ROI) for specific states using two average yields (AY) and two sale prices (SP), averaged across inoculants, from 73 soybean field experiments conducted between 2000 and 2008 in Indiana, Iowa, Nebraska, Minnesota, and Wisconsin.

			ty of success			
			NR = \$0 bu a ⁻¹ "t	oreak-even point"	NR = R	OI of 1 bu a ⁻¹
			AY = 4	0 bu a ⁻¹	AY= 40 bu a ⁻¹	AY= 50 bu a ⁻¹
State	Relative yield†	<i>P</i> -value	SP = \$6.00 bu a ⁻¹	SP = \$9.00 bu a ⁻¹	SP = \$9.00 bu a^{-1}	SP = \$9.00 bu a ⁻
Indiana	-0.7	0.747	19.1	24.5	3.8	6.8
Iowa	-1.6	0.251	2.2	4.2	0.0	0.2
Minnesota	0.04	0.969	15.2	25.1	0.3	1.3
Nebraska	1.1	0.393	45.1	58.2	4.2	11.1
Wisconsin	0.5	0.656	21.9	35.6	0.4	1.8
ANOVA	<i>P</i> -value					
State	0.664					

† Calculated relative to an untreated control treatment in each environment

Debruin et al. 2010, Crop Science.

Yield, relative to an untreated control, and probability of achieving a net return (NR) equal to the break-even point or return on investment (ROI) using two average yields (AY) and two sale prices (SP) for ten of the most widely tested of fifty-one soybean inoculant products tested at environments in the states of Indiana, Iowa, Nebraska, Minnesota, and Wisconsin.

				Probability of success								
				$NR = $0 \text{ bu } a^{-1}$ "	break-even point"	NR = ROI	of 1 bu a ⁻¹					
				AY = 4	0 bu a ⁻¹	AY= 40 bu a ⁻¹	AY= 50 bu a ⁻¹					
State	Environments tested	Relative yield†	<i>P</i> -value	SP = \$6.00 bu a ⁻¹	$SP = $9.00 \text{ bu } a^{-1}$	$SP = $9.00 \text{ bu } a^{-1}$	$SP = $9.00 \text{ bu } a^{-1}$					
Optimize	41	-1.5	0.315	3.4	6.1	0.1	0.3					
Nod+ w/Extender	32	1.5	0.333	57.2	67.2	13.0	23.9					
Nod+	27	-1.1	0.493	7.2	11.5	0.3	1.0					
Vault	23	1.1	0.563	45.7	54.9	10.6	18.8					
Cell Tech SCI	20	2.7	0.193	75.5	81.5	36.9	49.8					
Cell Tech 2000	20	0.9	0.763	45.4	51.0	20.9	27.8					
Nitragin "S"	13	2.6	0.220	74.1	80.0	37.5	49.6					
Cell Tech	12	-0.1	0.980	27.9	34.6	6.5	11.2					

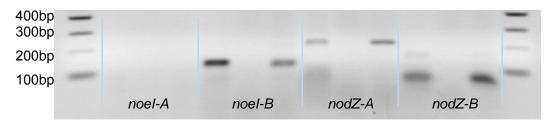
† Calculated relative to an untreated control treatment in each environment

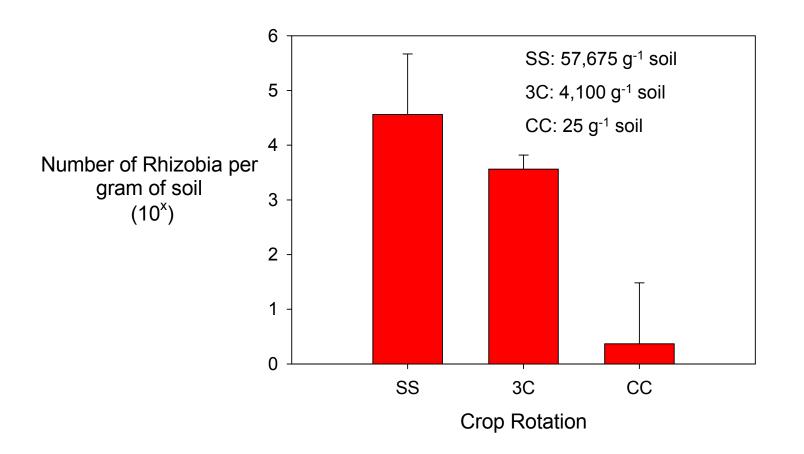
Debruin et al. 2010, Crop Science.

Characterizing Soybean Yield Response to Rhizobial Inoculants

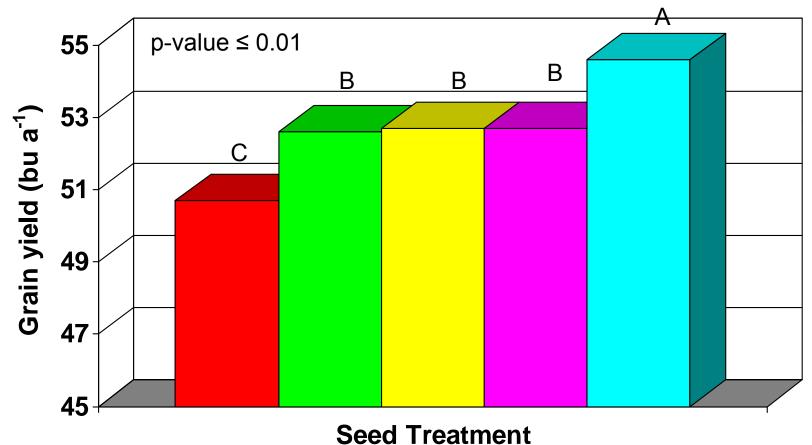
- Develop a patentable technique to quickly quantify soil rhizobia populations as well as develop a selection matrix from which growers can accurately assess the probability that an inoculant application will lead to increased yield and profitability.
- Our specific **objectives** are:
 - To develop a fast and reliable quantitative PCR assay to quantify soil rhizobial populations
 - To determine if rhizobial inoculation is necessary after flooding events
 - To quantify the effect of crop rotation and tillage on inoculant efficacy
 - To quantify yield response of inoculants over various environmental conditions

Developing a Rhizobia 'soil test'


- Previous studies suggest that if soybean is frequently grown in a crop rotation, soil rhizobia populations can be sustained without inoculation.
- Current methods for quantifying rhizobia:
 - Most Probable Number (MPN)
 - Plate Counts
- A more efficient method is needed!

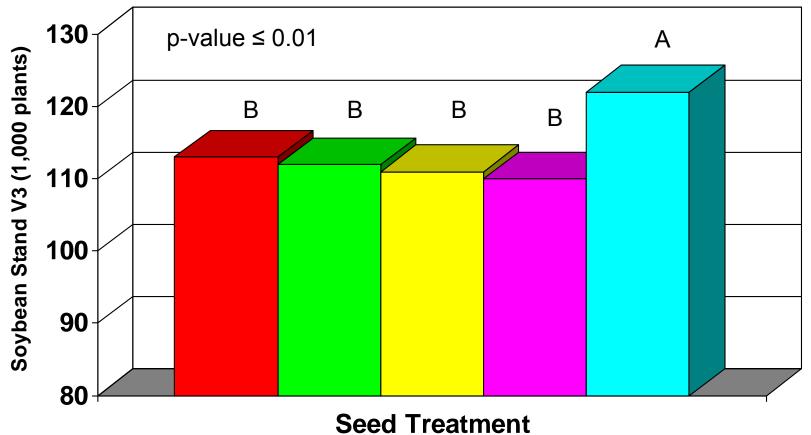

Polymerase Chain Reaction (PCR) and Quantitative Real-Time PCR

- PCR is a technique that multiplies a given sequence of DNA.
- qPCR measures the quantity of DNA as the reaction progresses
- Target genes for qPCR are the nodZ and noel specificity genes found Bradyrhizobium japonicum, B. elkanii, Sinorhizobium fredii and Rhizobium etli for the nodulation of soybean.
- Primer sets noel-B and nodZ-A perform well with standard PCR, at an annealing temperature of 58°C (see Figure). The length of the amplified DNA is as expected for each primer set.


PCR primer test with pure *Bradyrhizobium japonicum* USDA110 and a soybean plot soil sample. 58°C annealing temperature.

Number of soybean-nodulating rhizobia as determined by the MPN method

Soybean yield response to seed treatments across regions in 2009

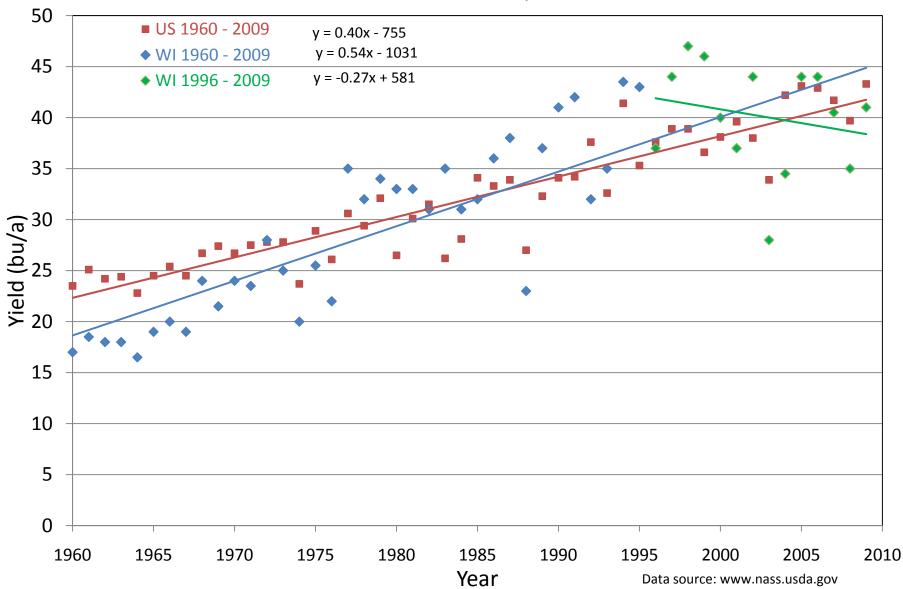

UTC 🗖 Optimize 🗆 Excalibre 🗖 ApronMaxx RFC 🗖 CruiserMaxx

Soybean stand response to seed treatments across regions in 2009

UTC 🗖 Optimize 🗆 Excalibre 🗖 ApronMaxx RFC 🗖 CruiserMaxx

Economics of Seed Treatments

Hybrid / Variety	Variety A	Variety B	difference
Seed Price (\$/bag)	\$51.50	\$62.00	-\$10.50
Kernels/Seeds per bag (no./bag)	140,000	140,000	0
Seed Population (number/acre)	190,000	165,000	25,000
Potential plant death (%)	10	10	0
Acres per bag (acres/bag)	0.67	0.77	0.10
Seed Cost (\$/acre)	\$76.88	\$80.38	-\$3.50
Herbicide Cost (\$/acre)	\$0.00	\$0.00	\$0.00
Insecticide Cost (\$/acre)	\$0.00	\$0.00	\$0.00
Fungicide Cost (\$/acre)	\$0.00	\$0.00	\$0.00
Insurance Cost (\$/acre)	\$0.00	\$0.00	\$0.00
Harvest Moisture (%)	20.0	20.0	0.0
Drying (\$/point*bushel)	<u>\$0.06</u>	<u>\$0.06</u>	<u>\$0.00</u>
Drying Cost (\$/bushel)	\$0.27	\$0.27	\$0.00
Handling Cost (\$/bushel)	\$0.02	\$0.02	\$0.00
Hauling Cost (\$/bushel)	\$0.04	\$0.04	\$0.00
Trucking Cost (\$/bushel)	\$0.11	\$0.11	\$0.00
Storage Cost (\$/bushel)	\$0.12	\$0.12	\$0.00
Yield adjustment (\$/bushel)	\$0.56	\$0.56	\$0.00
Yield adjustment (\$/acre)	\$33.60	\$33.60	\$0.00
Total Input Cost (\$/acre)	\$110.48	\$113.98	\$3.50


difference = \$10.5 per	difference = \$10.5 per bag: A = \$51.5, Variety B = \$62.								
Yield advantage		Crop Price (\$/bushel)							
bushel/acre		\$5.00	\$6.00	\$7.00	\$8.00	\$9.00	\$10.00	\$11.00	
	7	\$32	\$39	\$46	\$53	\$60	\$67	\$74	
	6	\$27	\$33	\$39	\$45	\$51	\$57	\$63	
Variety A	5	\$22	\$27	\$32	\$37	\$42	\$47	\$52	
yields less than	4	\$17	\$21	\$25	\$29	\$33	\$37	\$41	
Variety B	3	\$12	\$15	\$18	\$21	\$24	\$27	\$30	
	2	\$7	\$9	\$11	\$13	\$15	\$17	\$19	
	1	\$2	\$3	\$4	\$5	\$6	\$7	\$8	
Variety A = Variety B	0	\$3	\$3	\$3	\$3	\$3	\$3	\$3	
_	1	\$8	\$ 9	\$10	\$11	\$12	\$13	\$14	
	2	\$13	\$15	\$17	\$19	\$21	\$23	\$25	
Variety A	3	\$18	\$21	\$24	\$27	\$30	\$33	\$36	
yields more than	4	\$23	\$27	\$31	\$35	\$39	\$43	\$47	
Variety B	5	\$28	\$33	\$38	\$43	\$48	\$53	\$58	
	6	\$33	\$39	\$45	\$51	\$57	\$63	\$69	
	7	\$38	\$45	\$52	\$59	\$66	\$73	\$80	

Economic advantage (\$/acre) of Variety A or Variety B. Seed price

http://corn.agronomy.wisc.edu/Season/DSS.aspx

Soybean Yields

United States and Wisconsin, 1960 to 2010

Weed Management in GR Soybean

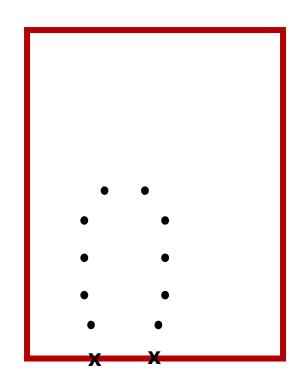
- 26% of respondents indicated that they applied a preemergence herbicide to their soybean crop.
- What is the average number of glyphosate applications you make to your soybeans?

	Number of applications					
Acreage	1	2	3	N/A	Ν	
< 100	68	28	1	2	88	
≥ 100	47	51	0	1	74	
Total	59	39	1	2	162	

• 3.1 bushel (7%) yield increase between 1 and 2+ passes

Predicted Yield Losses with Postemergence Herbicides

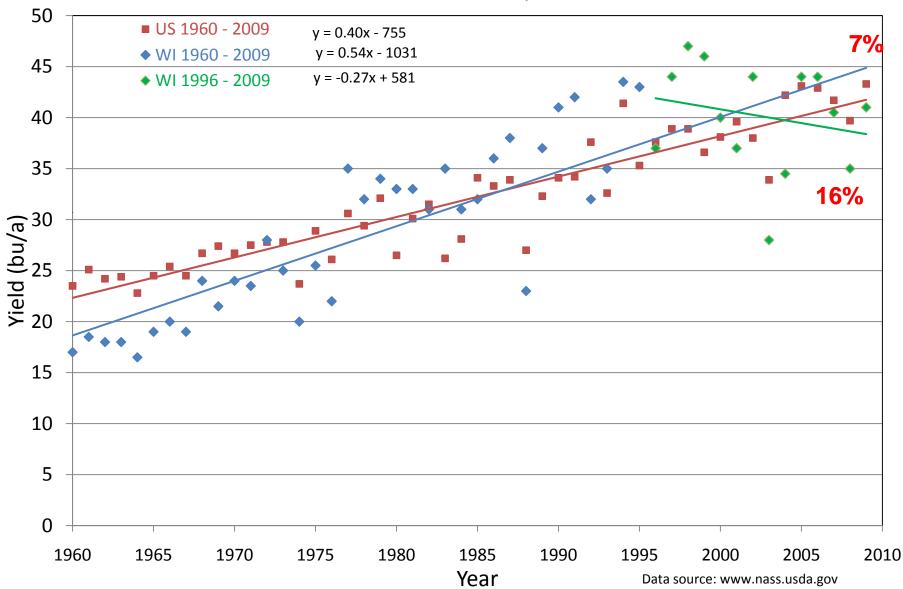
Nathanael D. Fickett, David E. Stoltenberg, and Chris M. Boerboom University of Wisconsin-Madison


Clarissa M. Hammond Wisconsin Department of Agriculture, Trade, and Consumer Protection

1. Survey: Methods

► Total POST fields:

- **2008**
 - ► Corn: 48 fields, 10 counties
 - ► Soybean: 30 fields, 8 counties
- **2009**
 - ► Corn: 45 fields, 11 counties
 - ► Soybean: 40 fields, 11 counties
- Surveyed 10 1-m² quadrats spaced by 30 paces in a horseshoe pattern


Summary

	20	800	2009		
	Corn	Soybean	Corn	Soybean	
Mean density (no./m ²)	102 ± 17	107 ± 26	93 ± 15	98 ± 25	
Mean height (in)	5.9 ± 0.8	8.5 ± 1.4	5.5 ± 0.7	7.0 ± 1.1	
Mean growth stage	V5	V4	V5	V3	
Mean yield loss (%)	4.4	9.3	4.8	3.1	

Weeds in many corn and soybean fields were controlled after critical heights of 4 and 6 inches, respectively

Soybean Yields

United States and Wisconsin, 1960 to 2010

Common Diseases of Soybean

Fungi

White Mold

BSR/SDS

Phytophthora Root Rot

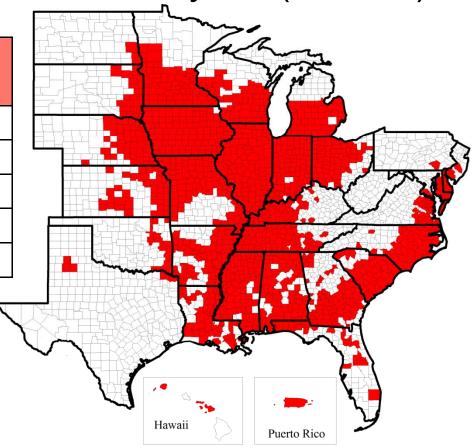
Bacteria

Bacterial Blight

Virus

Soybean Mosaic Virus Bean Pod Mottle Virus

Nematodes


Soybean Cyst Nematode

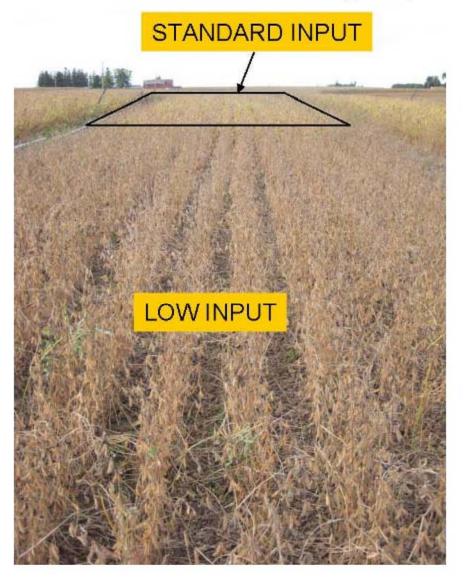
2009 WSMB Sponsored SCN Testing Program

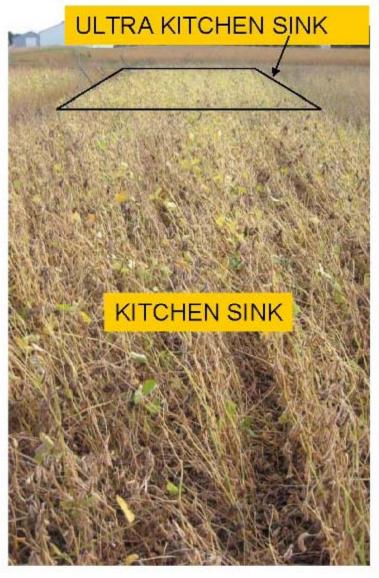
• 801 kits sent out

151 soil samples sent in and analyzed (11/1/09)

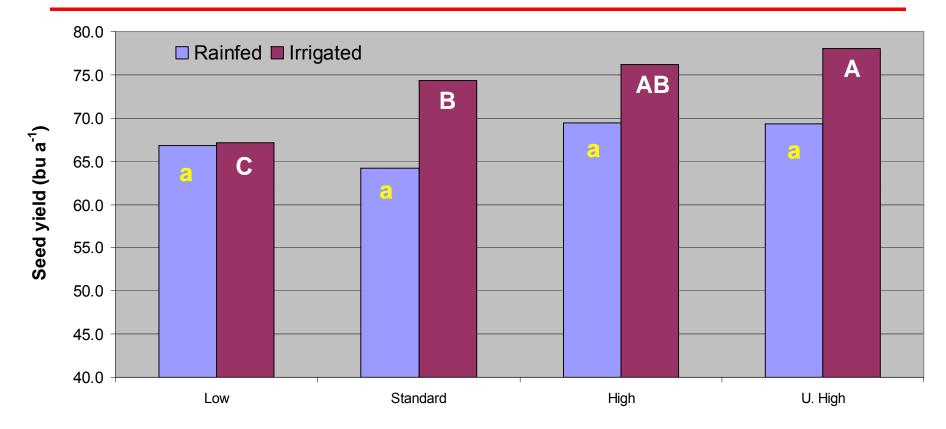
Risk of Yield Loss	Egg count range (per 100 cc soil)	% of total
None	0	73.5%
Low	1 to 500	7.9%
Moderate	500 to 2000	7.3%
High	2000 to 5000	5.3%
Very high	Over 5000	6.0%

High Yield Experiment 2008


RCB split-plot design with 5 reps

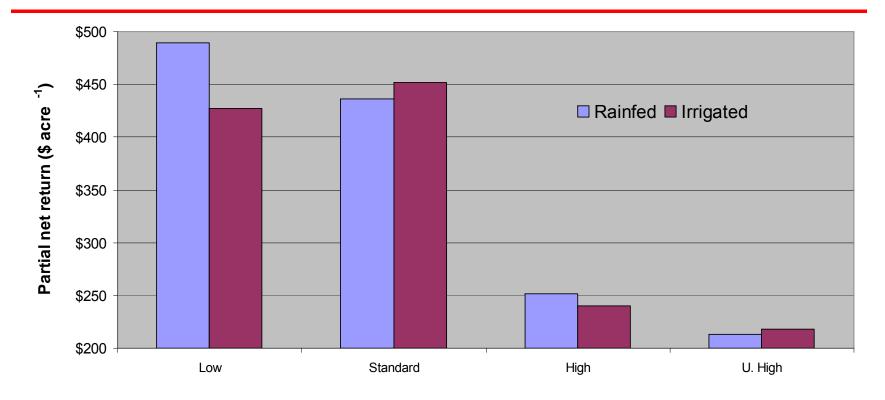

- Experimental unit: 20' by 50'

	Treatments							
		LOW INPUT		STANDARD		KITCHEN SINK		ULTRA KITCHEN SINK
Irrigation	1	Irrigated	2	Irrigated	3	Irrigated	4	Irrigated
Seeding Rate		175,000		175,000		260,000		260,000
Fertigation		28%		28%		28%		28%
Inoculant				Optimize		Optimize		Optimize
Seed treatment				CruiserMaxx		CruiserMaxx		CruiserMaxx
Foliar Insecticide				Warrior		Warrior		Warrior
Foliar Fungicide				Headline (1x)		Headline (2x)		Headline (2x)
						Quilt (1x)		Quilt (1x)
Soil applied biocide						Contans		Contans
Foliar nutrients						Micros (3x)		Micros (3x)
Nitrogen						Chicken litter		Chicken litter
P and K			_			40P + 80K		40P + 80K
Ethephon								Yes


2008 High Yield Trial

Arlington, WI Oct. 3, 2008

Grain Yield by Management System



- No response to management in a rain-fed environment
- Significant ($p \le 0.10$) management response in irrigated system

Differential Input Costs per Acre

			Irri	gated			Rain	fed	
Input	Product	Low	Stnd	High	U. High	Low	Stnd	High	U. High
Irrigation		64.80	64.80	64.80	64.80				
Biocide	Contans WG			42.00	42.00			42.00	42.00
Manure	Chickity Doo Doo			43.00	43.00			43.00	43.00
N + P + K	dry fertilizer			68.00	68.00			68.00	68.00
Inoculant	Optimize		2.13	2.13	2.13		2.13	2.13	2.13
Seed treatment	Cruiser Maxx		9.50	9.50	9.50		9.50	9.50	9.50
Seed	DSR-2200	35.00	35.00			35.00	35.00		
Seed	DSR-2200			52.00	52.00			52.00	52.00
PGR	Pistill				31.09				31.09
Foliar fungicide	Headline		15.00	30.00	30.00		15.00	30.00	30.00
Foliar fungicide	Quilt			15.00	15.00			15.00	15.00
Foliar nutrients	Mangro DF+ plus B			13.00	13.00			13.00	13.00
Foliar nutrients	EB Mix			13.49	20.23			13.49	20.23
Foliar nutrients	28%	10.05	10.05	10.05	10.05				
Insecticide	Warrior		6.00	6.00	6.00		6.00	6.00	6.00
Total		109.85	142.48	368.97	406.80	35.00	67.63	294.11	331.95

Comparison of System Profitability

- Break even yields:
 - Rain-fed environment: 6 to 34.5 bu
 - Irrigated environment: -3.1 to 26.1 bu

High Yield Experiment 2009

Input	
Irrigation	4 acre inches
Seeding rate	260000 seeds/a
Inoculant	Optimize and Soil Implant
Seed treatment	CruiserMaxx
Fertigation	28% N
Soil applied biocide	Contans
P and K	40 lb/a P + 80 lb/a K
Foliar nutrients	Micros (4x)
Foliar fungicides	Headline/Quilt (3x)
Foliar insecticide	Warrior (2x)

		<u>High input</u>	RR variety trial	
Brand	Variety	Yield (bu/a)		
Asgrow	DKB27-52	79		
Dairyland	DSR-2560/RR	81	60	
Kruger	K-249RR/SCN	79	72	
NK Brand	NK S21-N6	81	72	
Nu-Tech	6244	79	65	
Pioneer	93M11	75		

Top Prize \$1000

For more information and to enter, please contact:

> Dr. Shawn Conley 1575 Linden Drive Madison, WI 53706 608-262-7975 spconley@wisc.edu

Deadline to enter

July 15, 2010

Sponsored by:

Wisconsin Soybean Association Wisconsin Soybean Marketing Board University of Wisconsin-Extension College of Agriculture and Life Sciences For questions about the Wisconsin Soybean Marketing Board or the Wisconsin Soybean Association contact:

Bob Karls, Executive Director 2976 Triverton Pike Rd. Madison, WI 53711 Tel: 608-274-7522 FAX: 608-274-3988 E-mail: karls@wisoybean.org

2010 WISCONSIN SOYBEAN YIELD CONTEST

A NEW PROGRAM TO RECOGNIZE WISCONSIN'S TOP SOYBEAN PRODUCERS

Plant Management Network

Visit/Support Focus on Soybean

- An online educational resource for soybean growers and consultants
- Open-access webcasts monthly courtesy of the United Soybean Board

Find it at: www.plantmanagementnetwork.org/fos

Or at: www.unitedsoybean.org

😻 The Soy Report: November 2009 - Mozilla Firefox		
Eile Edit View History Bookmarks Yahoo! Iools Help		
🕜 💵 C 🗶 🏠 📵 http://thesoyreport.blogspot.com/2009_11_01_archive.html	🗟 ☆ 🔹 🗔 Google	P 🔒
🙍 Most Visited 🏶 Getting Started 🔝 Latest Headlines 🗋 Customize Links 📄 Blogger 🔊 The Soy Report 🔊 PlantDOC Cases 🔊 Madison, WI Weather 🤡 7-Day For	ecast for La	
😹 🔯 🔏 🖄 💼 Google 🔤 😵 Search + 🖗 🗐 Sidewiki + 🗃 + 🧔 + 🏠 Bookmarks + 🗿 Translate - 🔦 AutoLin	k + 🎦 AutoFill + 🌽 🔦 + 🕒 conleysp + 🏦 🌗 - M -	
😒 ! • 🖉 • Search Web • 🔰 • 🖄 Mail • 🆄 Shopping • 🚸 Personals • 🌚 My Yahoo! 🖏 News • 🤪	Games 🔹 🍏 Travel 🍷 🐉 Finance 🔹 🖏 Answers 🔹 🏇 Sports 🍷 🚺 Sign In 🔸	
Share Report Abuse Next Blog»	(Create Blog Sign I

The Soy Report

MONDAY, NOVEMBER 30, 2009

Biological Control and White Mold of Soybean

With the wide-spread reports of White mold (or Sclerotinia stem rot, SSR) this year in Wisconsin and across the region, we have been fielding many questions about control options. In particular, many of these questions have been about Contans WG. In this blog, Angie Peltier (Postdoctoral Research Associate in Plant Pathology) and I try to provide information that will help you understand more what biological control for white mold entails.

What is Contans WG?

Contans WG (SipcamAdvan; Durham, NC) is a commercial biocontrol agent and is a proprietary powder formulation that contains the fungus <u>Con</u>iothyrium minitans. Contans WG has been labeled for use in both conventional and organic soybean.

C. minitans was first described in California in 1947, and it is now known to have a world-wide distribution. The host range of *C. minitans* includes important plant pathogens such as *Sclerotinia sclerotiorum*, *S. trifoliorum*, *S. minor*, and some strains of *Botrytis cinerea*, *B. fabae*, and *Sclerotium cepivorum* (Turner and Tribe, 1976).

How does it work?

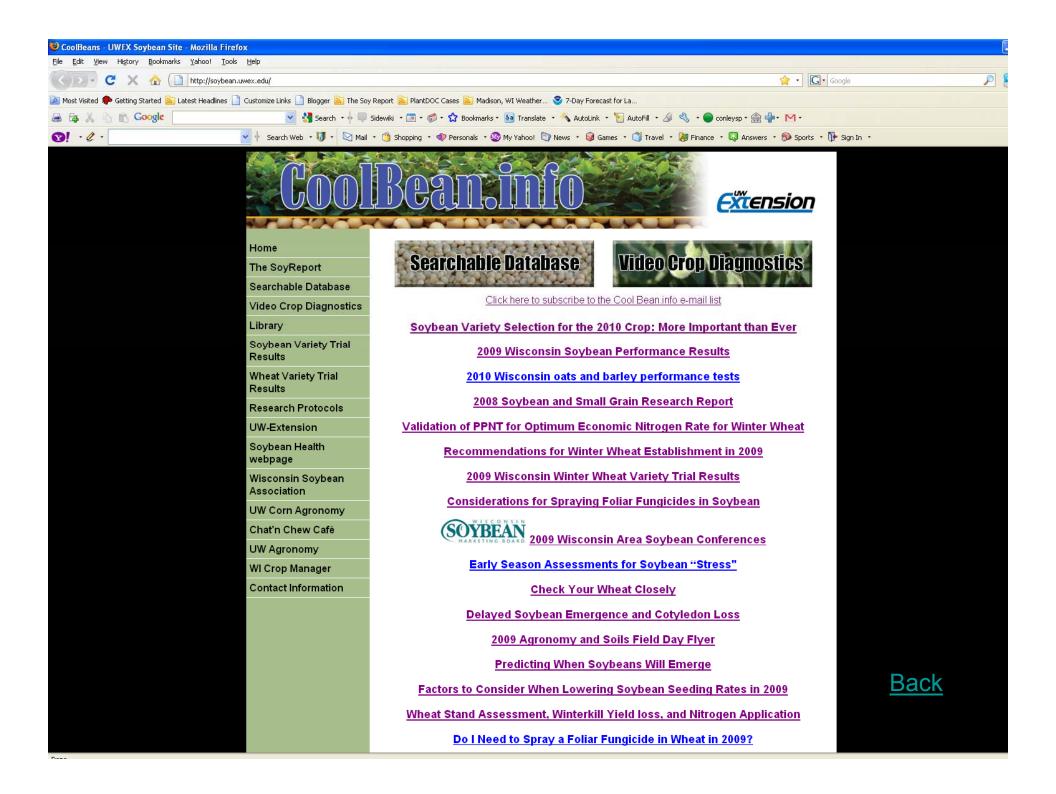
The fungus that causes white mold (*Sclerotinia sclerotiorum*) produces long-lived survival structures called sclerotia that many say resemble rat droppings. Sclerotia are important in the life cycle of *Sclerotinia*, allowing the fungus to survive in the soil until conditions are favorable for the disease cycle to begin: Upon canopy closure and during periods of cool and wet weather, sclerotia germinate to produce mushroom-like fruiting structures called apothecia. Apothecia produce ascospores that are wind-disseminated. If during a period of leaf wetness ascospores land on dying soybean flower tissue, they can use this food source to gain entry into susceptible soybean plants and cause disease. Many apothecia can emerge from one sclerotium, making each sclerotium an important inoculum source.

The Soy Report Missio

To provide Wisconsin growers and agricultural clientèle with timely crop management recommendations, diagnostics, and crop updates.

WI State Soybean and Wheat Extension Specialist

Shawn Conley


WI State Extension Field Crops Plant Pathologist

Paul Esker

The Soy Report: Awarded 2009 ASA Extension Educational Materials Certificate of Excellence

