

2010

# WISCONSIN SOYBEAN VARIETY TEST RESULTS

Department of Agronomy
College of Agricultural and Life Science
University of Wisconsin-Madison

**Wisconsin Crop Improvement Association** 



# 2010 WISCONSIN SOYBEAN VARIETY TEST RESULTS

A3654

S.P. Conley, M. J. Martinka, J. M. Gaska, P. Esker, and N. C. Koval Departments of Agronomy and Plant Pathology University of Wisconsin, Madison

The Wisconsin Soybean Variety Test is conducted each year with the producer's needs in mind. Our objective is to give producers the information to select varieties that will satisfy their specific goals and are most likely to perform best under their management practices.

| 2010 Report  General Information                                          | Table | Page# |
|---------------------------------------------------------------------------|-------|-------|
| General information                                                       | '     | 7     |
| Southern Region Tests Arlington, Janesville, Lancaster                    | 2     | 5     |
| Central Region Tests Fond du Lac, Galesville, Hancock                     | 3     | 8     |
| North-Central Region Tests<br>Chippewa Falls, Marshfield,<br>Seymour      | 4     | 10    |
| Northern Region Tests Spooner, Sturgeon Bay Conv. and Traited Herb. Tests | 5     | 12    |
| Southern (Arl. and Lancaster)                                             | 6     | 13    |
| North-Central (Marshfield)                                                | 7     | 15    |
| White mold disease test Arlington                                         | 8     | 17    |
| Soybean Cyst Nematode Test<br>East Troy, Hancock                          | 9     | 18    |
| Seed Sources for 2010 Tests                                               | 10    | 19    |
| Precipitation and Temperature Summary                                     | 11    | 20    |
| Characteristics of Varieties                                              | 12    | 21    |

#### **How the Entries were Tested**

Seed companies, private breeders, and University research and Extension specialists voluntarily submitted any number of entries they wished. Most of these entries are commercially available, but experimental varieties were also tested. Several additional commercial and public cultivars were included for comparison.

Tests were conducted using conventional or reduced tillage practices. The white mold tests were planted at 225,000 seeds/a, while the standard variety tests were planted at 175,000 seeds/a, at row spacings listed in Table 1. Tests were conducted using a randomized complete block design with four replicates. Table 1 also lists the herbicides used for weed control in the conventional and glyphosate tolerant variety trials.

## **Growing Conditions**

Wisconsin soybean growers experienced widely variable weather conditions in 2010. Warmer than normal temperatures coupled with ample rainfall across most of WI led to a projected record statewide average soybean yield of 50 bu/a; up 10 bu/a from 2009.

Soybean planting was slightly ahead while emergence was similar to the 5 year average.

Temperatures in June, July, and August remained warmer than normal; however crop development was similar to the 5 year average and greatly ahead of 2009. In many areas of Wisconsin, the 2010 growing season was well ahead of the 30 year average. From April 1<sup>st</sup> through October 1<sup>st</sup> the crop had accumulated

approximately 300 more GDU's than the 30 year norm. Excellent growing conditions were noted as statewide crop conditions were rated at >75% good to excellent the entire season. Extremely dry conditions were prevalent across much of Wisconsin in late August through September. The dry conditions however had little impact on yield as the soybean crop was advanced and ample residual water was available to progress the soybean crop through maturity.

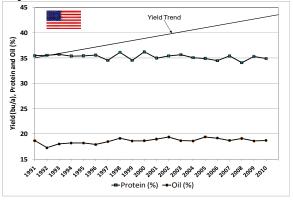
October was characterized by warmer and dryer than normal weather. This significantly expedited harvest. As of October 15<sup>th</sup>, 80% of the WI soybean crop had been harvest whereas typically 40% of the crop would be removed. By October 31<sup>st</sup> nearly 100% of the soybean crop was harvested. Source: <a href="https://www.nass.usda.gov">www.nass.usda.gov</a>

## **How Performance was Measured**

<u>Yield</u>: Plots were weighed and moisture was determined in the field using electronic equipment on the plot harvester. Yields are reported in bushels (60 pounds/bushel) per acre at 13 percent moisture content.

<u>Lodging</u>: Lodging scores were based on the average erectness of the main stem of plants at maturity. 1 = all plants erect, 2 = slight lodging,  $3 = \text{plants lodged at } 45^{\circ}$  angle, 4 = severe lodging, 5 = all plants flat.

Maturity: An entry was considered mature when at least 90 percent of the pods had turned their mature color. Seven to ten days of drying weather are generally required before soybeans are ready to combine. Variety performance is presented by originator/brand, and then from


earliest to latest based on the company supplied relative maturity of the variety.

### **Protein and Oil**

Seed samples from all varieties grown in select locations were collected and analyzed using a near infrared transmittance (NIRT) grain analyzer to determine grain composition. Our goal in providing this information is to increase soybean value transparency so producers can consider the protein and oil content of varieties planted as well as the yield. In 2010, soybeans grown across the US averaged 34.9% protein and 18.7% oil. (www.ussoyexports.org)

Wisconsin soybean seed composition was higher for protein (35.1%) and slightly lower for oil (18.6%) than US averages. The factor that influences protein the most and that is under control of a producer is variety selection. Data from the Wisconsin Soybean Variety Tests indicates that proper variety selection can result in 200 more pounds per acre of protein and oil without compromising grain yield.

# Summary of Yield and Quality Data for US Soybeans



# **Phytophthora Root Rot**

There are many races of Phytophthora. Resistance genes are incorporated into varieties (see Table 12) to provide complete or partial resistance to this fungus as follows:

Gene Races
Rps1-a 1, 2, 10, 11, 13-18, 24
Rps1-b 1, 3-9, 13-15, 17, 18, 21, 22
Rps1-c 1-3, 6-11, 13, 15, 17, 21, 23, 24
Rps1-k 1-11, 13-15, 17, 18, 22, 24
Rps3 1-5, 8, 9, 11, 13, 14, 16, 18, 23, 25
Rps4 1-4, 10, 12, 16, 18-21, 25
Rps6 1-4, 10, 12, 14-16, 18-21, 25

There are several races of Phytophthora in Wisconsin, thus selection of soybean varieties with the appropriate resistance gene is paramount for its control. Race 3 is the predominant form of Phytophthora in Wisconsin soils. Thus, the long-used Rps1a gene is not providing protection 95% of the time. Race 4 occurs in 25% of Wisconsin soybean fields. Growers have an excellent chance of controlling race 3 by planting varieties with the Rps1-c or Rps1-k gene. The Rps1-k gene provides complete resistance against most races of Phytophthora found in Wisconsin. That being said, race 25 has been found here in Wisconsin and the Rps 1-k gene does not protect against that race. Many varieties express tolerance (partial resistance) to all races of Phytophthora, but varieties with this form of resistance are vulnerable in the early seedling phase of Phytophthora. Certain fungicides applied to seed can provide a window of protection to tolerant varieties during emergence. Variety tolerance ratings are not reported and can be supplied by seed industry representatives. The information shown in Table 12 is based on information supplied by public breeders or companies that are releasing or marketing the variety.

# White Mold (Sclerotinia)

Sclerotinia infects through the flowers during early reproductive growth, but symptoms are delayed until early pod formation and plant death is evident as the crop progresses towards maturity. White mold was a minor issue in 2010. The reaction of soybean varieties to the white mold pathogen is expressed as plant mortality and reduced grain yield in the presence of high white mold pressure. Varieties that express 25% or less plant mortality generally yield well in the presence of white mold. Results of the trial are presented in Table 8.

# Soybean Cyst Nematode (SCN)

SCN has gained significant importance as a yield-limiting pathogen in Wisconsin. A major concern is that growers are not aware of its presence on their farms. SCN can cause severe stunting and chlorosis of soybean plants, but these symptoms are always not common as SCN can also cause major yield loss without obvious symptoms. The most common "symptom" caused by SCN is a yield decline over years even though top crop management practices are Significant advances have been made to improve varieties for resistance to SCN. Results of the 2010 SCN variety trial are presented in Table 9. High yield performance in the presence of SCN is an excellent strategy to help select varieties that are resistant or tolerant in SCN infested Watch for white mold when SCN fields. resistant varieties are planted for the first time in SCN infested fields. SCN can suppress dense crop canopies required for white mold to develop. Many SCN resistant varieties are also resistant to brown stem rot.

# Brown Stem Rot (BSR)

BSR is a major disease of soybean in Wisconsin however; BSR incidence was low across the state in 2010. External symptoms of BSR are not observed until after pod development begins. There are examples where fields have both SDS and BSR, which can make diagnoses difficult, since foliar

symptoms are similar. There are two pathotypes of the pathogen that cause BSR. The defoliating pathotype causes more severe internal stem discoloration and defoliation of leaves, compared with the nondefoliating pathotype that only causes internal stem symptoms. Select resistant varieties if BSR has been a problem in the field.

### Sudden Death Syndrome (SDS)

Sudden death syndrome (SDS) incidence was greatly increased in 2010. SDS is caused by a fungus and is frequently associated with the soybean cyst nematode. Leaves suddenly die during early pod development and fall from plants. SDS tolerance information is available on individual soybean varieties from locations where this disease was noted.

### **Emerging Soybean Diseases**

Stem Canker (SC) incidence was low in 2010. SC is caused by a fungus. Symptoms of SC appear during mid-pod development and leaves wilt and die but stay attached to plants. Brown lesions

appear on stems in the lower quarter of the plant. Leaf symptoms may resemble white mold but the white cottony mold will not be observed nor will the black sclerotia of the white mold pathogen. Crop rotation appears to be the best control at this time.

### **Soybean Viruses and Insects**

Soybean aphid populations were variable in WI in 2010. Some regions within the state reached economic threshold levels that required treatment. The bean leaf beetle was observed in low numbers in the southern counties. Soybean growers and agronomic advisors need to carefully monitor early season bean leaf beetle populations again in 2011. Plants infected by viruses commonly produce discolored seed, which is another symptom to use in assessing the virus situation in a specific field. Late season bean leaf beetle infestation can cause extensive feeding injury to pods, thus combining with BPMV to reduce seed yield and quality. Evidence is increasing that soybean varieties differ in the ability to yield in the presence of insects and associated viruses.

### What the Results Mean

The performance of a variety may vary from year to year, even at the same location. Multiple tests over two or more years more accurately predict the variety performance. When selecting a variety, consider maturity, herbicide tolerance, disease resistance, and grain composition in addition to yield.

Small differences in yield may not be significant. The yield of any two entries may differ because of chance factors (such as differences in fertility, moisture availability and diseases) even though the two entries do not have inherently different yielding abilities. As an aid in determining true differences in yield, the Least Significant Difference (LSD) statistic is used. If the difference between varieties is greater than the tabulated LSD value, then the entries are said to be "significantly different." The probability of a mean difference being greater than the LSD by chance is 1 out of 10 for the 0.10 LSD value.

Authors: S. Conley is an Associate Professor of Agronomy, M.J. Martinka is Program Manager in Agronomy, J.M. Gaska is Outreach Specialist in Agronomy, P. Esker is Assistant Professor of Plant Pathology, and N. C. Koval is an Assistant Researcher in Plant Pathology, College of Agricultural and Life Sciences, University of Wisconsin-Madison. S. Conley and P. Esker also hold appointments with University of Wisconsin-Extension, Cooperative Extension.

This publication is available from your Wisconsin county Extension office and from the Department of Agronomy, 1575 Linden Dr., Madison, Wisconsin 53706. Phone (608) 262-1390. The Wisconsin Soybean Variety Test results can also be viewed at and downloaded from the UW Soybean Program website at http://www.coolbean.info. Further disease information can also be obtained at http://www.plantpath.wisc.edu/soyhealth/index.htm.

Wisconsin Crop Improvement Association provides financial support for the Wisconsin soybean variety tests. <a href="http://www.wisc.edu/wcia">http://www.wisc.edu/wcia</a>

**University of Wisconsin-Extension**, Cooperative Extension, in cooperation with the U.S. Department of Agriculture and Wisconsin counties, publishes this information to further the purpose of the May 8 and June 30, 1914 Acts of Congress; and provides equal opportunities and affirmative action in employment and programming. If you need this material in an alternative format, contact the University of Wisconsin Agronomy Department at (608) 262-1390.

A3654 2010 Wisconsin Soybean Variety Test results

\$12.00

**TABLE 1. GENERAL INFORMATION ON THE 2010 SOYBEAN TESTS** 

| Location                           | Cooperators                | Row     | Soil                   |           |            |           |            |                                        | Planting | Harvest | A۱   | /erage Yi | eld   |
|------------------------------------|----------------------------|---------|------------------------|-----------|------------|-----------|------------|----------------------------------------|----------|---------|------|-----------|-------|
|                                    |                            | Spacing | Type                   |           |            | Tests     |            | Pesticide Program <sup>2</sup>         | Date     | Date    | 2010 | 2009      | 09-10 |
| Arlington<br>RR Variety Trial (VT) | John Gaska<br>Matt Repking | 15"     | Silt loam              | pH:<br>P: | 6.5<br>64  | OM:<br>K: | 3.1<br>145 | PPI: Dul, Pur<br>Post: Rnd             | 3-May    | 12-Oct  | 74   | 66        | 70    |
| Arlington<br>Conventional VT       | John Gaska<br>Matt Repking | 15"     | Silt loam              | pH:<br>P: | 6.5<br>64  | OM:<br>K: | 3.1<br>145 | PPI: Dul, Pur<br>Post: Bas, Har        | 3-May    | 11-Oct  | 72   | 62        | 67    |
| Arlington<br>White Mold Trials     | John Gaska<br>Matt Repking | 7.5"    | Silt loam<br>Irrigated | pH:<br>P: | 6.3<br>23  | OM:<br>K: | 3.0<br>127 | PPI: Dul, AuthF<br>Post: Rptr : RR-Rnd | 19-May   | 12-Oct  | 77   | 47        | 62    |
| Chippewa Falls<br>Variety Trial    | Jerry Clark                | 15"     | Silt loam              | pH:<br>P: | 6.1<br>3.3 | OM:<br>K: | 2.9<br>103 | Pre: None<br>Post: Rnd, Pur            | 17-May   | 5-Oct   | 70   | 45        | 58    |
| Fond du Lac<br>Variety Trial       | Ed Montsma<br>Mike Rankin  | 15"     | Silt loam              | pH:<br>P: | 6.8<br>30  | OM:<br>K: | 3.8<br>82  | Pre: Valor, Frrt<br>Post: Rnd          | 19-May   | 7-Oct   | 70   | 52        | 61    |
| Galesville<br>Variety Trial        | Ken Congdon<br>John Zander | 15"     | Silt loam              | pH:<br>P: | 6.1<br>40  | OM:<br>K: | 3.4<br>168 | Pre: None<br>Post: Rnd(2), Asr         | 5-May    | 15-Oct  | 70   | 52        | 61    |
| East Troy<br>SCN Variety Trial     | Matt Scurek                | 15"     | Sandy Loam             | pH:<br>P: | 7.2<br>32  | OM:<br>K: | 5.7<br>96  | Pre: Valor, Frrt<br>Post: Rnd          | 19-May   | 14-Oct  | 69   | 64        | 67    |
| Hancock<br>Variety Trial           | Jolyn Rasmussen            | 15"     | Sand<br>Irrigated      | pH:<br>P: | 5.7<br>102 | OM:<br>K: | 0.6<br>73  | Pre: None<br>Post: Rnd (2)             | 6-May    | 8-Oct   | 68   | 56        | 62    |
| Hancock<br>SCN Variety Trial       | Jolyn Rasmussen            | 15"     | Sand<br>Irrigated      | pH:<br>P: | 5.7<br>102 | OM:<br>K: | 0.6<br>73  | Pre: None<br>Post: Rnd (2)             | 6-May    | 8-Oct   | 65   | 65        | 65    |
| Janesville<br>Variety Trial        | Jim Stute                  | 15"     | Silt loam              | pH:<br>P: | 6.6<br>51  | OM:<br>K: | 3.2<br>148 | Pre: Valor, Frrt<br>Post: Rnd(2), Asr  | 3-May    | 30-Sep  | 79   | 71        | 75    |
| Lancaster<br>RR Variety Trial      | Tim Wood                   | 15"     | Silt loam              | pH:<br>P: | 6.8<br>22  | OM:<br>K: | 1.6<br>79  | PPI: Pur, Prw, Snc<br>Post: Rnd        | 4-May    | 11-Oct  | 66   | 50        | 58    |
| Lancaster<br>Conventional VT       | Tim Wood                   | 15"     | Silt loam              | pH:<br>P: | 6.8<br>22  | OM:<br>K: | 1.6<br>79  | PPI: Pur, Prw, Snc<br>Post: Rptr       | 4-May    | 11-Oct  | 61   | 39        | 50    |
| Marshfield<br>RR Variety Trial     | Mike Bertram               | 15"     | Silt loam              | pH:<br>P: | 6.1<br>52  | OM:<br>K: | 2.7<br>128 | PPI: Frrt, Dul<br>Post: Rnd, Pur       | 18-May   | 14-Oct  | 53   | 51        | 52    |
| Marshfield<br>Conventional VT      | Mike Bertram               | 15"     | Silt loam              | pH:<br>P: | 6.1<br>52  | OM:<br>K: | 2.7<br>128 | PPI: Frrt, Dul<br>Post: Rptr           | 18-May   | 14-Oct  | 53   | 49        | 51    |
| Seymour<br>Variety Trial           | Mike Maass<br>Kevin Jarek  | 15"     | Clay loam              | pH:<br>P: | 7.0<br>19  | OM:<br>K: | 2.5<br>70  | Pre: None<br>Post: Rnd, Pur            | 20-May   | 6-Oct   | 45   | 55        | 50    |
| Spooner<br>Dry Land VT             | Phil Holman                | 7"      | Silt Loam              | pH:<br>P: | 6.3<br>23  | OM:<br>K: | 2.1<br>82  | Pre: None<br>Post: Rnd                 | 19-May   | 6-Oct   | 52   | 39        | 46    |
| Spooner<br>Irrigated VT            | Phil Holman                | 7"      | Sandy Loam             | pH:<br>P: | 6.4<br>89  | OM:<br>K: | 1.4<br>111 | Pre: None<br>Post: Rnd, Rptr           | 18-May   | 7-Oct   | 50   | 43        | 47    |
| Sturgeon Bay<br>Variety Trial      | Dick Weidman               | 15"     | Silt Loam              | pH:<br>P: | 5.6<br>204 | OM:<br>K: | 2.0<br>137 | Pre: None<br>Post: Rnd, Rptr           | 20-May   | 7-Oct   | 61   | 47        | 54    |

 $<sup>^{1}</sup>$  OM = Organic Matter in %; P= ppm of Phosphorus and K = ppm of Potassium.

<sup>&</sup>lt;sup>2</sup> Pesticide Abbreviations: CN= Conventional, RR= Tolerance to glyphosate herbicide, AuthF= Authority First, Asr= Assure, Bas-= Basagran, Dul= Dual II Magnum, Frrt= Firstrate, Har= Harmony, Pst=Poast Plus, Pur= Pursuit, Prw= Prowl, Rptr= Raptor, Rnd= Roundup, Snc= Sencor.

TABLE 2. SOUTHERN REGION ROUNDUP READY SOYBEAN TEST (Page 1 of 3)

Performance of Commercial Entries at Three Southern Wisconsin Locations. ARL=ARLINGTON, JAN=JANESVILLE, LAN=LANCASTER

|                  |              |          | 2010  | 3-Test A | verage   |      | 2010 Yi | elds | 2010    | Compo | sition 1 |       | 2       | 009 3-Te | st Avera | ge   |          | 6 -Test |
|------------------|--------------|----------|-------|----------|----------|------|---------|------|---------|-------|----------|-------|---------|----------|----------|------|----------|---------|
|                  |              | Maturity | Yield | Lodging  | Maturity | ARL  | JAN     | LAN  | Protein | Oil   | Protein  | Yield | Lodging | Maturity | Protein  | Oil  | Protein  | Ave.    |
| Originator/Brand | Entry        | Group    |       |          |          |      |         |      |         |       | plus Oil |       |         |          |          |      | plus Oil | Yield   |
|                  |              |          | bu/A  | 1-5      | date     |      | bu/A    |      | %       | %     | lb/A     | bu/A  | 1-5     | date     | %        | %    | lb/A     | bu/A    |
| Asgrow           | AG 2031      | 2.0      | 73    | 3.0      | 13-Sep   | 75   | * 83    | 61   | 32.4    | 20.0  | 2370     |       |         |          |          |      |          |         |
| Asgrow           | AG 2131      | 2.1      | 66    | 4.3      | 13-Sep   | 67   | 73      | 57   | 32.7    | 19.9  | 2129     |       |         |          |          |      |          |         |
| Asgrow           | AG 2330      | 2.3      | * 77  | 3.5      | 20-Sep   | 76   | * 85    | * 70 | 32.5    | 19.8  | 2375     |       |         |          |          |      |          |         |
| Asgrow           | AG 2430      | 2.4      | * 74  | 2.2      | 20-Sep   | * 80 | 77      | 65   | 31.2    | 19.9  | 2446     |       |         |          |          |      |          |         |
| Asgrow           | AG 2830      | 2.8      | * 77  | 2.4      | 28-Sep   | 78   | * 89    | 65   | 31.0    | 19.5  | 2358     |       |         |          |          |      |          |         |
| Asgrow           | AG 3030      | 3.0      | * 80  | 2.5      | 28-Sep   | * 80 | * 88    | * 72 | 32.8    | 18.9  | 2477     |       |         |          |          |      |          |         |
| Croplan          | RT 2127      | 2.1      | 69    | 1.8      | 17-Sep   | 76   | 72      | 60   | 31.8    | 20.5  | 2394     | 59    | 1.1     | 20-Sep   | 33.9     | 19.1 | 1901     | 64      |
| Croplan          | RC 2257      | 2.2      | 73    | 2.1      | 16-Sep   | 78   | 76      | 66   | 30.4    | 20.9  | 2383     |       |         |          |          |      |          |         |
| Croplan          | R2T 2440     | 2.3      | * 76  | 2.4      | 18-Sep   | * 84 | 70      | * 73 | 31.0    | 20.1  | 2577     |       |         |          |          |      |          |         |
| Croplan          | RT 2489      | 2.4      | * 76  | 2.4      | 23-Sep   | 76   | 78      | * 74 | 32.9    | 19.1  | 2383     |       |         |          |          |      |          |         |
| Croplan          | RT 2588      | 2.5      | * 77  | 2.1      | 20-Sep   | * 83 | 79      | 68   | 32.0    | 19.7  | 2565     | * 67  | 1.0     | 3-Oct    | 34.0     | 18.9 | 2117     | * 72    |
| Dairyland        | DSR-2011/RR  | 2.0      | * 75  | 2.2      | 18-Sep   | 75   | 81      | * 70 | 32.6    | 20.1  | 2369     |       | -       |          |          |      |          |         |
| Dairyland        | DSR-2375/R2Y | 2.3      | * 74  | 2.8      | 19-Sep   | 71   | * 83    | * 69 | 32.6    | 18.7  | 2171     |       |         |          |          |      |          |         |
| Dairyland        | DSR-2727/R2Y | 2.7      | 72    | 2.4      | 1-Oct    | 66   | * 84    | 65   | 32.4    | 18.8  | 2009     |       |         |          |          |      |          |         |
| Dairyland        | DSR-2770/RR  | 2.7      | 71    | 2.6      | 23-Sep   | 68   | 76      | 68   | 31.4    | 20.4  | 2085     | * 66  | 1.5     | 6-Oct    | 35.8     | 18.2 | 2136     | * 68    |
| Dairyland        | DSR-2930/R2Y | 2.9      | * 76  | 2.8      | 29-Sep   | 69   | * 90    | 68   | 32.3    | 18.6  | 2094     | * 66  | 1.8     | 6-Oct    | 35.2     | 17.5 | 2086     | * 71    |
| Dyna-Gro         | 33RY23       | 2.3      | * 74  | 3.3      | 26-Sep   | 74   | 81      | 66   | 33.5    | 19.2  | 2356     |       |         | 0 00.    | 00.2     |      | 2000     |         |
| Dyna-Gro         | 36RY24       | 2.4      | 70    | 2.7      | 18-Sep   | 70   | 79      | 60   | 33.6    | 19.3  | 2231     |       |         |          |          |      |          |         |
| Dyna-Gro         | 25N9 RR      | 2.5      | * 79  | 2.3      | 19-Sep   | * 82 | * 83    | * 73 | 32.1    | 19.9  | 2558     | 62    | 1.1     | 2-Oct    | 35.7     | 17.8 | 1990     | * 71    |
| FS HISOY         | HS 2166      | 2.1      | 70    | 2.5      | 14-Sep   | 72   | 74      | 64   | 32.8    | 20.2  | 2284     |       |         |          |          |      |          |         |
| FS HiSOY         | HS 21A02     | 2.1      | * 75  | 2.8      | 14-Sep   | 78   | 79      | 67   | 32.8    | 20.2  | 2486     |       |         |          |          |      |          |         |
| FS HiSOY         | HS 22R70     | 2.2      | 72    | 2.2      | 19-Sep   | 78   | 70      | 67   | 30.3    | 20.9  | 2396     | 61    | 1.3     | 24-Sep   | 33.6     | 194  | 1958     | * 67    |
| FS HiSOY         | HS 23A02     | 2.3      | 71    | 3.0      | 21-Sep   | 73   | 79      | 60   | 33.4    | 19.2  | 2291     | •     | 1.0     | 2 · 00p  | 00.0     |      | 1000     | 0.      |
| FS HiSOY         | HS 24A01     | 2.4      | * 75  | 2.3      | 20-Sep   | * 80 | * 83    | 63   | 30.9    | 20.4  | 2463     |       |         |          |          |      |          |         |
| FS HISOY         | HS 24R91     | 2.4      | * 77  | 2.7      | 24-Sep   | 77   | * 84    | * 71 | 32.2    | 19.9  | 2391     | * 67  | 1.6     | 6-Oct    | 35.3     | 18.3 | 2160     | * 72    |
| FS HiSOY         | HS 25A02     | 2.5      | 69    | 2.4      | 19-Sep   | 64   | 78      | 65   | 32.9    | 19.5  | 1997     |       |         |          |          |      |          |         |
| G2               | 7208         | 2.0      | 70    | 2.8      | 15-Sep   | 68   | 79      | 62   | 33.0    | 20.2  | 2178     | 62    | 1.0     | 22-Sep   | 34.4     | 18.9 | 1962     | 66      |
| G2               | 7212         | 2.1      | * 74  | 2.4      | 18-Sep   | * 84 | 73      | 64   | 30.6    | 20.2  | 2603     | * 64  | 1.0     | 25-Sep   | 33.7     |      | 2032     | * 69    |
| G2               | 7230         | 2.3      | 73    | 2.4      | 22-Sep   | 70   | 80      | * 69 | 32.0    | 20.3  | 2200     | - J-  | 1.0     | 20 Ocp   | 00.1     | 10.4 | 2002     | - 55    |
| G2               | 7249         | 2.4      | 71    | 2.3      | 19-Sep   | 71   | 78      | 65   | 32.0    | 20.2  | 2240     | * 64  | 1.3     | 30-Sep   | 34.5     | 18.6 | 2044     | * 68    |

TABLE 2. SOUTHERN REGION ROUNDUP READY SOYBEAN TEST (Page 2 of 3)

Performance of Commercial Entries at Three Southern Wisconsin Locations. ARL=ARLINGTON, JAN=JANESVILLE, LAN=LANCASTER

|                  |               |          | 2010  | 3-Test A | verage           |          | 2010 Yi | elds | 2010 (  | Compo | sition 1 |       | 2       | 009 3-Te       | st Avera | ge    |          | 6 -Test |
|------------------|---------------|----------|-------|----------|------------------|----------|---------|------|---------|-------|----------|-------|---------|----------------|----------|-------|----------|---------|
|                  |               | Maturity | Yield | Lodging  | Maturity         | ARL      | JAN     | LAN  | Protein | Oil   | Protein  | Yield | Lodging | Maturity       | Protein  | Oil   | Protein  | Ave.    |
| Originator/Brand | Entry         | Group    |       |          |                  |          |         |      |         |       | plus Oil |       |         |                |          |       | plus Oil | Yield   |
|                  |               |          | bu/A  | 1-5      | date             |          | bu/A    |      | %       | %     | lb/A     | bu/A  | 1-5     | date           | %        | %     | lb/A     | bu/A    |
| G2               | 7250          | 2.5      | * 78  | 1.6      | 18-Sep           | 77       | * 85    | * 72 | 30.2    | 21.2  | 2376     |       |         |                |          |       |          |         |
| G2               | 7258          | 2.5      | 71    | 2.3      | 22-Sep           | 70       | 80      | 64   | 32.9    | 20.4  | 2245     |       |         |                |          |       |          |         |
| G2               | 7260          | 2.6      | 73    | 2.4      | 24-Sep           | 67       | * 85    | 68   | 32.4    | 20.1  | 2101     |       |         |                |          |       |          |         |
| G2               | 7283          | 2.8      | 71    | 2.8      | 24-Sep           | 65       | 78      | * 71 | 31.5    | 20.7  | 2038     |       |         |                |          |       |          |         |
| G2               | 7288          | 2.8      | 65    | 2.8      | 21-Sep           | 61       | 70      | 64   | 32.2    | 20.1  | 1921     | * 64  | 1.4     | 5-Oct          | 34.8     | 18.9  | 2047     | 64      |
| G2               | 7290          | 2.9      | 71    | 1.6      | 25-Sep           | 72       | 74      | 67   | 32.6    | 19.8  | 2266     |       |         |                |          |       |          |         |
| Hughes           | 454 RR        | 2.5      | * 74  | 3.0      | 22-Sep           | 77       | 80      | 65   | 34.0    | 19.3  | 2457     | * 65  | 1.8     | 5-Oct          | 35.5     | 18.1  | 2089     | * 69    |
| Hughes           | 555 RR        | 2.5      | * 76  | 2.1      | 25-Sep           | 76       | * 83    | * 70 | 32.4    | 19.7  | 2375     | * 65  | 1.1     | 1-Oct          | 35.9     | 17.7  | 2088     | * 71    |
| Hughes           | 777 RR        | 2.7      | 73    | 2.5      | 29-Sep           | 75       | 80      | 63   | 33.5    | 18.4  | 2335     | * 68  | 1.5     | 7-Oct          | 36.3     | 17.1  | 2181     | * 70    |
| Jung             | 1225 RR2      | 2.2      | * 79  | 1.8      | 16-Sep           | * 87     | 82      | 68   | 30.8    | 20.7  | 2680     |       |         |                |          |       |          |         |
| Jung             | 1234 RR2      | 2.3      | * 74  | 3.3      | 21-Sep           | 76       | 82      | 65   | 33.3    | 19.3  | 2383     |       |         |                |          |       |          |         |
| Jung             | 1248 RR2      | 2.4      | * 75  | 1.5      | 12-Sep           | * 85     | 76      | 65   | 32.0    | 20.2  | 2661     |       |         |                |          |       |          |         |
| Kruger           | K-201RR/SCN   | 2.0      | 68    | 2.7      | 12 Sep           | 68       | 73      | 64   | 31.9    | 20.6  | 2144     | * 63  | 1.3     | 23-Sep         | 34.9     | 18 9  | 2038     | 66      |
| Legacy           | LS-2509 RR    | 2.5      | * 76  | 2.7      | 25-Sep           | 73       | * 86    | * 69 | 32.5    | 19.9  | 2282     |       | 1.0     | 20 000         | 0 1.0    | 10.0  | 2000     |         |
| NK Brand         | S 21-B1 Brand | 2.1      | 68    | 2.6      | 16-Sep           | 68       | 75      | 60   | 31.1    | 20.6  | 2117     |       |         |                |          |       |          |         |
|                  |               |          |       |          |                  |          |         |      |         |       |          |       |         |                |          |       |          |         |
| NK Brand         | S 21-N6 Brand | 2.1      | 71    | 2.4      | 18-Sep           | 66       | 82      | 65   | 31.6    | 20.3  | 2066     | 62    | 1.2     | 24-Sep         | 34.0     | 19.3  | 1986     | * 67    |
| NK Brand         | S 26-P1       | 2.1      | 68    | 2.2      | 14-Sep           | 67       | 78      | 58   | 32.3    | 19.9  | 2099     |       |         | ·              |          |       |          |         |
| NK Brand         | S 23-A8 Brand | 2.3      | 71    | 2.5      | 21-Sep           | 72       | 74      | 68   | 31.7    | 19.7  | 2212     |       |         |                |          |       |          |         |
| NK Brand         | S 25-F2 Brand | 2.5      | 71    | 1.5      | 19-Sep           | 69       | 79      | 66   | 31.7    | 20.0  | 2148     |       |         |                |          |       |          |         |
| NK Brand         | S 25-T8 Brand | 2.5      | 71    | 2.8      | 23-Sep           | 70       | 81      | 62   | 32.0    | 19.9  | 2172     |       |         |                |          |       |          |         |
| NK Brand         | S 27-C4 Brand | 2.7      | 72    | 2.3      | 27-Sep           | * 79     | 75      | 63   | 32.1    | 19.9  | 2467     | * 67  | 1.2     | 3-Oct          | 35.2     | 18 3  | 2151     | * 70    |
| NuTech           | 6224          | 2.2      | 72    | 2.4      | 24-Sep           | 69       | 80      | 67   | 33.6    | 19.4  | 2205     | * 65  | 1.3     | 5-Oct          | 35.1     |       | 2072     | * 68    |
| NuTech           | 6228          | 2.2      | * 79  | 2.3      | 19-Sep           | 77       | * 85    | * 75 | 32.4    | 20.1  | 2439     | 00    | 1.5     | 3 001          | 55.1     | 10.5  | 2012     | 00      |
| NuTech           | 7222          | 2.2      | 71    | 2.1      | 17-Sep           | 77       | 71      | 65   | 30.2    | 21.1  | 2374     | * 64  | 1.1     | 23-Sep         | 33.7     | 19.5  | 2028     | * 67    |
| NuTech           | 7235          | 2.3      | 70    | 2.1      | 20-Sep           | 71       | 74      | 64   | 32.4    | 20.1  | 2241     | •     |         | _0 <b>0</b> 0p | 00       | . 0.0 | _0_0     |         |
| NuTech           | 7251          | 2.5      | * 76  | 2.0      | 23-Sep           | 77       | * 84    | 67   | 32.4    | 19.5  | 2401     | * 65  | 1.3     | 29-Sep         | 36.2     | 17 7  | 2093     | * 70    |
| NuTech           | 2660 RN       | 2.6      | * 74  | 2.3      | 23-Sep<br>27-Sep | 77<br>75 | 80      | 68   | 31.3    | 19.9  | 2306     | * 66  | 1.3     | 3-Oct          | 33.9     | 18.7  |          | * 70    |
| NuTech           | 6281          | 2.8      | * 75  | 2.3      | 30-Sep           | 68       | * 83    | * 75 | 32.8    | 19.6  | 2151     | * 66  | 1.7     | 9-Oct          | 36.0     |       | 2139     | * 71    |
| NuTech           | 7297          | 2.8      | * 74  | 2.8      | 28-Sep           | 70       | * 87    | 64   | 30.7    | 19.5  | 2096     | 00    | 1.7     | 3-001          | 50.0     | 10.0  | 2100     |         |
| O'Brien          | O'Soy 250 RR  | 2.5      | 73    | 2.8      | 25-Sep           | 69       | 82      | * 69 | 32.9    | 19.5  | 2172     | 62    | 1.6     | 6-Oct          | 35.2     | 18.3  | 1988     | * 68    |
| ODIIGII          | 0 00y 200 KK  | ۷.5      | 13    | ۷.5      | 20-0ep           | Uð       | UΖ      | υð   | JZ.3    | 13.0  | 4114     | UZ    | 1.0     | 0-001          | JJ.2     | 10.5  | 1900     | 00      |

TABLE 2. SOUTHERN REGION ROUNDUP READY SOYBEAN TEST (Page 3 of 3)

Performance of Commercial Entries at Three Southern Wisconsin Locations. ARL=ARLINGTON, JAN=JANESVILLE, LAN=LANCASTER

|                  |            |          | 2010  | 3-Test A | verage   |      | 2010 Yi | elds | 2010    | Compo | sition 1 |       |        | 2009 3-Te  | st Avera | ge   |          | 6 -Test |
|------------------|------------|----------|-------|----------|----------|------|---------|------|---------|-------|----------|-------|--------|------------|----------|------|----------|---------|
|                  |            | Maturity | Yield | Lodging  | Maturity | ARL  | JAN     | LAN  | Protein | Oil   | Protein  | Yield | Lodgin | g Maturity | Protein  | Oil  | Protein  | Ave.    |
| Originator/Brand | Entry      | Group    |       |          |          |      |         |      |         |       | plus Oil |       |        |            |          |      | plus Oil | Yield   |
|                  |            |          | bu/A  | 1-5      | date     |      | bu/A    |      | %       | %     | lb/A     | bu/A  | 1-5    | date       | %        | %    | lb/A     | bu/A    |
| Pioneer Brand    | 91Y90      | 1.9      | 71    | 1.4      | 13-Sep   | 75   | 76      | 61   | 32.1    | 20.0  | 2341     | 61    | 1.0    | 23-Sep     | 34.9     | 18.2 | 1935     | 66      |
| Pioneer Brand    | 92Y30      | 2.3      | 71    | 1.9      | 18-Sep   | 75   | 74      | 64   | 31.1    | 20.8  | 2338     | * 64  | 1.0    | 1-Oct      | 34.6     | 19.0 | 2069     | * 68    |
| Pioneer Brand    | 92Y51      | 2.5      | 73    | 2.3      | 23-Sep   | 75   | 76      | 67   | 32.7    | 20.0  | 2376     |       |        |            |          |      |          |         |
| Pioneer Brand    | 92Y80      | 2.8      | 71    | 2.6      | 26-Sep   | 71   | * 85    | 58   | 33.5    | 20.0  | 2285     | * 67  | 1.2    | 3-Oct      | 35.9     | 18.7 | 2199     | * 69    |
| Pioneer Brand    | 93M11      | 2.9      | * 76  | 1.7      | 27-Sep   | 76   | 80      | * 71 | 31.0    | 20.7  | 2355     |       |        |            |          |      |          |         |
|                  |            |          |       |          |          |      |         |      |         |       |          |       |        |            |          |      |          |         |
| Power Plus       | 20E1       | 2.0      | 69    | 2.8      | 14-Sep   | 73   | 72      | 63   | 32.5    | 20.4  | 2301     |       |        |            |          |      |          |         |
| Power Plus       | 23Z1       | 2.3      | 70    | 2.3      | 23-Sep   | 70   | 74      | 66   | 32.2    | 20.0  | 2186     |       |        |            |          |      |          |         |
| Power Plus       | 28S1       | 2.8      | 71    | 2.5      | 24-Sep   | 73   | 76      | 65   | 31.8    | 20.5  | 2286     |       |        |            |          |      |          |         |
| Renk             | RS 241 R2  | 2.4      | * 79  | 2.1      | 22-Sep   | * 82 | * 86    | * 69 | 30.9    | 20.1  | 2516     |       |        |            |          |      |          |         |
| Renk             | RS 259 NRR | 2.5      | * 75  | 2.2      | 22-Sep   | 78   | 79      | 68   | 32.7    | 19.6  | 2449     | * 64  | 1.1    | 30-Sep     | 35.8     | 17.7 | 2048     | * 69    |
|                  |            |          |       |          |          |      |         |      |         |       |          |       |        |            |          |      |          |         |
| Renk             | RS 261 NR2 | 2.6      | 69    | 3.2      | 26-Sep   | 66   | 79      | 63   | 32.0    | 18.6  | 1990     |       |        |            |          |      |          |         |
| Renk             | RS 271 NR2 | 2.7      | 70    | 2.3      | 28-Sep   | 72   | 75      | 64   | 31.4    | 19.4  | 2183     |       |        |            |          |      |          |         |
| Renze            | R 1805     | 1.8      | 69    | 3.2      | 22-Sep   | 71   | 72      | 65   | 31.6    | 20.3  | 2217     |       |        |            |          |      |          |         |
| Steyer           | 2710 RR2   | 2.7      | * 76  | 2.2      | 29-Sep   | 71   | * 87    | * 70 | 31.0    | 19.3  | 2128     |       |        |            |          |      |          |         |
| Trelay           | 21RR37     | 2.1      | * 80  | 1.5      | 19-Sep   | * 85 | 82      | * 73 | 30.7    | 21.1  | 2653     |       |        |            |          |      |          |         |
|                  |            |          |       |          |          |      |         |      |         |       |          |       |        |            |          |      |          |         |
| Trelay           | 23RR31     | 2.3      | 73    | 2.9      | 26-Sep   | 77   | 79      | 63   | 33.1    | 19.3  | 2419     |       |        |            |          |      |          |         |
| Trelay           | 25RR58     | 2.5      | 71    | 2.5      | 23-Sep   | 73   | 80      | 60   | 32.5    | 18.8  | 2217     |       |        |            |          |      |          |         |
|                  |            |          |       |          |          |      |         |      |         |       |          |       |        |            |          |      |          |         |
| Mean             |            |          | 73    | 2.4      | 21-Sep   | 74   | 79<br>7 | 66   | 32.1    | 19.9  | 2299     | 63    | 1.3    | 30-Sep     | 34.9     | 18.5 | 2011     | 69      |
| LSD(0.10)        |            |          | 6     | 0.8      | 5        | 8    | 7       | 6    | 0.9     | 0.4   | 244      | 5     | 0.4    | 4          | 0.5      | 0.3  | 189      | 5       |

<sup>\*</sup> Yields preceded by a '\*' are not significantly different (0.10 level) than the highest yielding cultivar.

<sup>&</sup>lt;sup>1</sup> Protein and Oil determinations collected at the Arlington site in 2010.

TABLE 3. CENTRAL REGION ROUNDUP READY SOYBEAN TEST (Page 1 of 2)

Performance of Commercial Entries at Three Central Wisconsin Locations. FON = FOND DU LAC, GAL = GALESVILLE, HAN=HANCOCK

|                  |               |          | 201   | 0 3-Test | Average  | 2    | .010 Yi | elds | 2010 (  | Compo | osition <sup>1</sup> |       | 200     | 09 3-Test | Average | )    |          | 6-Test |
|------------------|---------------|----------|-------|----------|----------|------|---------|------|---------|-------|----------------------|-------|---------|-----------|---------|------|----------|--------|
|                  |               | Maturity | Yield | Lodging  | Maturity | FON  | GAL     | HAN  | Protein | Oil   | Protein              | Yield | Lodging | Maturity  | Protein | Oil  | Protein  | Ave.   |
| Originator/Brand | Entry         | Group    |       |          |          |      |         |      |         |       | plus Oil             |       |         |           |         |      | plus Oil | Yield  |
|                  | ·             |          | bu/A  | 1-5      | date     |      | bu      | ı/A  | %       | %     | lb/A                 | bu/A  | 1-5     | date      | %       | %    | lb/A     | bu/A   |
| Asgrow           | AG 1631       | 1.6      | 67    | 2.4      | 15-Sep   | * 73 | 62      | 67   | 34.4    | 19.4  | 2004                 |       |         |           |         |      |          |        |
| Asgrow           | AG 1831       | 1.8      | 71    | 2.2      | 17-Sep   | * 77 | 70      | 65   | 34.0    | 20.3  | 2294                 |       |         |           |         |      |          |        |
| Asgrow           | AG 1931       | 1.9      | 69    | 2.2      | 12-Sep   | 67   | * 76    | 65   | 35.1    | 19.3  | 2491                 |       |         |           |         |      |          |        |
| Asgrow           | AG 2031       | 2.0      | * 73  | 1.9      | 17-Sep   | * 72 | * 76    | * 71 | 34.8    | 19.4  | 2464                 |       |         |           |         |      |          |        |
| Asgrow           | AG 2131       | 2.1      | 66    | 3.5      | 19-Sep   | 61   | 66      | * 71 | 34.7    | 19.3  | 2138                 |       |         |           |         |      |          |        |
| Asgrow           | AG 2330       | 2.3      | * 75  | 2.5      | 20-Sep   | * 75 | * 75    | * 74 | 35.0    | 19.0  | 2437                 |       |         |           |         |      |          |        |
| Channel          | 1800R2 Brand  | 1.8      | 69    | 1.8      | 21-Sep   | 64   | * 75    | 67   | 33.9    | 19.9  | 2412                 |       |         |           |         |      |          |        |
| Channel          | 1901R2 Brand  | 1.9      | 71    | 2.1      | 17-Sep   | * 73 | 71      | 68   | 35.0    | 19.5  | 2326                 |       |         |           |         |      |          |        |
| Channel          | 2000R2 Brand  | 2.0      | * 73  | 1.8      | 17-Sep   | * 77 | * 74    | 67   | 34.7    | 19.7  | 2431                 |       |         |           |         |      |          |        |
| Channel          | 2200R2 Brand  | 2.2      | 72    | 2.0      | 21-Sep   | * 74 | 73      | 68   | 33.8    | 20.0  | 2367                 | * 57  | 1.0     | 30-Sep    | 34.3    | 18.8 | 1822     | * 64   |
| Croplan          | R2C 2070      | 2.0      | 70    | 1.8      | 17-Sep   | * 72 | 70      | 69   | 34.8    | 19.8  | 2281                 |       |         |           |         |      |          |        |
| Croplan          | RT 1992       | 1.9      | 64    | 1.9      | 18-Sep   | 68   | 64      | 59   | 34.0    | 20.0  | 2059                 | * 57  | 1.0     | 24-Sep    | 34.1    | 19.5 | 1814     | 60     |
| Croplan          | RC 2068       | 2.0      | 70    | 1.9      | 17-Sep   | 67   | 69      | * 73 | 34.5    | 19.9  | 2236                 | 51    | 1.0     | 28-Sep    | 34.9    | 18.9 | 1654     | * 61   |
| Croplan          | RT 2092       | 2.0      | 64    | 1.9      | 17-Sep   | 70   | 63      | 60   | 34.1    | 19.8  | 2029                 | * 54  | 1.0     | 25-Sep    | 34.1    | 19.2 | 1733     | 59     |
| Croplan          | RC 2257       | 2.2      | 69    | 2.2      | 18-Sep   | 70   | 67      | 69   | 33.2    | 20.2  | 2137                 |       |         |           |         |      |          |        |
| Dairyland        | DSR-1710/R2Y  | 1.7      | 68    | 1.8      | 15-Sep   | 70   | 69      | 65   | 34.1    | 19.4  | 2201                 |       |         |           |         |      |          |        |
| Dairyland        | DST18-003/R2Y | 1.8      | 68    | 2.0      | 18-Sep   | 68   | 72      | 63   | 34.0    | 19.4  | 2314                 |       |         |           |         |      |          |        |
| Dairyland        | DSR-2011/RR   | 2.0      | 71    | 1.8      | 17-Sep   | * 77 | * 74    | 61   | 34.4    | 19.6  | 2382                 |       |         |           |         |      |          |        |
| Dairyland        | DSR-2132/R2Y  | 2.1      | 71    | 1.7      | 18-Sep   | * 74 | 71      | 68   | 35.1    | 18.6  | 2282                 | * 54  | 1.2     | 28-Sep    | 35.5    | 17.9 | 1732     | * 63   |
| Dairyland        | DST22-007/R2Y | 2.2      | 68    | 2.6      | 24-Sep   | 68   | 71      | 66   | 32.7    | 19.9  | 2248                 |       |         |           |         |      |          |        |
| Dairyland        | DSR-2375/R2Y  | 2.3      | * 75  | 2.7      | 24-Sep   | * 73 | * 76    | * 77 | 33.8    | 18.6  | 2395                 |       |         |           |         |      |          |        |
| Dyna-Gro         | 36RY19        | 1.9      | 70    | 2.1      | 14-Sep   | 71   | 71      | 69   | 33.7    | 19.6  | 2277                 |       |         |           |         |      |          |        |
| Dyna-Gro         | 35RY21        | 2.1      | 67    | 1.9      | 21-Sep   | 70   | 66      | 65   | 33.9    | 19.6  | 2120                 |       |         |           |         |      |          |        |
| FS HISOY         | HS 2166       | 2.1      | 69    | 2.1      | 17-Sep   | 71   | 71      | 65   | 34.9    | 19.6  | 2313                 |       |         |           |         |      |          |        |
| FS HiSOY         | HS 21A02      | 2.1      | 70    | 1.8      | 18-Sep   | * 72 | * 77    | 61   | 34.8    | 19.7  | 2527                 |       |         |           |         |      |          |        |
| FS HiSOY         | HS 22R70      | 2.2      | 71    | 1.9      | 18-Sep   | * 72 | 67      | * 74 | 33.4    | 20.1  | 2153                 | 52    | 1.0     | 27-Sep    | 33.7    | 19.4 | 1660     | * 62   |
| G2               | 6159          | 1.5      | 62    | 2.3      | 6-Sep    | 63   | 61      | 61   | 35.1    | 20.3  | 2040                 | 51    | 1.1     | 17-Sep    | 35.0    | 19.1 | 1647     | 56     |
| G2               | 6160          | 1.6      | 65    | 2.2      | 13-Sep   | 67   | 67      | 60   | 34.4    | 19.5  | 2169                 |       |         |           |         |      |          |        |
| G2               | 7164          | 1.6      | 64    | 2.5      | 16-Sep   | 66   | 62      | 64   | 34.4    | 19.4  | 2013                 |       |         |           |         |      |          |        |
| G2               | 7180          | 1.8      | 62    | 2.2      | 17-Sep   | 63   | 58      | 66   | 35.5    | 19.1  | 1906                 |       |         |           |         |      |          |        |
| G2               | 7208          | 2.0      | 69    | 2.1      | 18-Sep   | 69   | 67      | * 70 | 35.0    | 19.6  | 2191                 | * 58  | 1.0     | 27-Sep    | 34.5    | 18.8 | 1864     | * 63   |
| G2               | 7212          | 2.1      | 70    | 2.2      | 17-Sep   | * 75 | 64      | * 71 | 33.4    | 20.1  | 2053                 | 51    | 1.2     | 27-Sep    | 33.7    | 19.4 | 1629     | * 61   |
| G2               | 7230          | 2.3      | 69    | 1.9      | 20-Sep   | 69   | 68      | 69   | 34.1    | 19.7  | 2211                 |       |         |           |         |      |          |        |
| G2               | 7249          | 2.4      | 69    | 1.9      | 19-Sep   | 71   | 69      | 66   | 34.2    | 19.7  | 2232                 |       |         |           |         |      |          |        |
| G2<br>Continued  | 7258          | 2.5      | 72    | 2.0      | 23-Sep   | * 75 | 73      | 68   | 36.2    | 19.4  | 2421                 |       |         |           |         |      |          |        |

TABLE 3. CENTRAL REGION ROUNDUP READY SOYBEAN TEST (Page 2 of 2)

Performance of Commercial Entries at Three Central Wisconsin Locations.

FON = FOND DU LAC, GAL = GALESVILLE, HAN=HANCOCK

|                  |               |          | 201   | 0 3-Test | Average  | 2    | 010 Yi | elds | 2010 (  | Compo | osition <sup>1</sup> |       | 200     | 09 3-Test | Average | ;    |          | 6-Test |
|------------------|---------------|----------|-------|----------|----------|------|--------|------|---------|-------|----------------------|-------|---------|-----------|---------|------|----------|--------|
|                  |               | Maturity | Yield | Lodging  | Maturity | FON  | GAL    | HAN  | Protein | Oil   | Protein              | Yield | Lodging | Maturity  | Protein | Oil  | Protein  | Ave.   |
| Originator/Brand | Entry         | Group    |       |          |          |      |        |      |         |       | plus Oil             |       |         |           |         |      | plus Oil | Yield  |
|                  |               | ·        | bu/A  | 1-5      | date     |      | bu     | /A   | %       | %     | lb/A                 | bu/A  | 1-5     | date      | %       | %    | lb/A     | bu/A   |
| Jung             | 1163 RR2      | 1.6      | 67    | 2.1      | 13-Sep   | 70   | 62     | 69   | 35.4    | 19.2  | 2015                 |       |         |           |         |      |          |        |
| Jung             | 1196 RR2      | 1.9      | 69    | 2.1      | 16-Sep   | 67   | 72     | 67   | 33.8    | 20.1  | 2335                 |       |         |           |         |      |          |        |
| Jung             | 1201 RR2      | 2.0      | 68    | 1.8      | 17-Sep   | * 72 | 73     | 59   | 34.8    | 19.8  | 2388                 |       |         |           |         |      |          |        |
| Jung             | 1225 RR2      | 2.2      | 72    | 1.8      | 21-Sep   | 70   | * 75   | * 71 | 33.9    | 20.0  | 2427                 | * 58  | 1.1     | 25-Sep    | 34.7    | 18.7 | 1872     | * 65   |
| Legacy           | LS-1710 RR2   | 1.7      | * 74  | 2.1      | 16-Sep   | * 76 | * 75   | * 70 | 34.7    | 19.4  | 2434                 |       |         |           |         |      |          |        |
| Legacy           | LS-1909 RR    | 2.0      | 68    | 1.9      | 17-Sep   | 71   | 65     | 69   | 34.5    | 19.8  | 2128                 |       |         |           |         |      |          |        |
| NK Brand         | S 19-A6 Brand | 1.9      | * 73  | 1.7      | 20-Sep   | 71   | * 80   | 69   | 34.0    | 19.3  | 2549                 | 52    | 1.4     | 30-Sep    | 35.0    | 17.6 | 1631     | * 63   |
| NK Brand         | S 21-B1 Brand | 2.1      | 70    | 2.3      | 19-Sep   | 68   | 66     | * 75 | 32.5    | 20.5  | 2086                 |       |         |           |         |      |          |        |
| NK Brand         | S 21-N6 Brand | 2.1      | 68    | 1.8      | 18-Sep   | 68   | 66     | 69   | 33.7    | 20.3  | 2130                 | 53    | 1.3     | 28-Sep    | 34.5    | 18.9 | 1690     | 60     |
| NK Brand         | S 23-A8 Brand | 2.3      | 68    | 2.3      | 20-Sep   | * 72 | 68     | 64   | 34.4    | 19.1  | 2199                 |       |         |           |         |      |          |        |
| NuTech           | 1808 RN       | 1.8      | 68    | 1.7      | 18-Sep   | 67   | 73     | 63   | 34.7    | 19.3  | 2379                 | * 56  | 1.0     | 28-Sep    | 34.8    | 18.5 | 1785     | * 62   |
| NuTech           | 6195          | 1.9      | 69    | 1.8      | 23-Sep   | 69   | 70     | 67   | 34.9    | 18.7  | 2242                 |       |         |           |         |      |          |        |
| NuTech           | 7199          | 1.9      | 65    | 2.0      | 17-Sep   | 67   | 59     | 68   | 34.4    | 19.7  | 1911                 | * 54  | 1.2     | 28-Sep    | 35.7    | 18.3 | 1762     | 60     |
| NuTech           | 6224          | 2.2      | 70    | 1.9      | 20-Sep   | * 74 | 66     | * 71 | 34.7    | 19.3  | 2123                 | 51    | 1.3     | 1-Oct     | 35.9    | 17.8 | 1642     | * 61   |
| NuTech           | 7201          | 2.0      | 66    | 1.8      | 15-Sep   | 70   | 61     | 66   | 34.0    | 20.1  | 1986                 | * 54  | 1.0     | 24-Sep    | 34.7    | 19.0 | 1738     | 60     |
| NuTech           | 6228          | 2.2      | * 73  | 1.9      | 18-Sep   | 71   | * 78   | * 70 | 34.4    | 19.7  | 2536                 |       |         |           |         |      |          |        |
| NuTech           | 7222          | 2.2      | 69    | 2.2      | 20-Sep   | 70   | 68     | * 70 | 33.4    | 20.1  | 2173                 | * 56  | 1.2     | 27-Sep    | 33.9    | 19.3 | 1795     | * 63   |
| NuTech           | 6244          | 2.4      | * 74  | 1.8      | 21-Sep   | * 73 | * 75   | * 75 | 33.8    | 19.1  | 2373                 | 51    | 1.3     | 1-Oct     | 34.6    | 18.4 | 1622     | * 63   |
| O'Brien          | O'Soy 150 RR  | 1.6      | 69    | 2.0      | 19-Sep   | 66   | 63     | * 77 | 35.7    | 19.1  | 2056                 |       |         |           |         |      |          |        |
| O'Brien          | O'Soy 250 RR  | 2.5      | * 74  | 1.9      | 24-Sep   | * 75 | * 76   | * 72 | 34.8    | 19.3  | 2463                 | 48    | 1.4     | 4-Oct     | 36.2    | 17.3 | 1553     | * 61   |
| Pioneer Brand    | 91Y80         | 1.8      | 63    | 1.8      | 17-Sep   | 64   | 62     | 62   | 34.5    | 19.9  | 2031                 | 53    | 1.1     | 19-Sep    | 35.0    | 18.7 | 1709     | 58     |
| Pioneer Brand    | 91Y90         | 1.9      | 66    | 1.8      | 13-Sep   | 66   | 69     | 63   | 34.9    | 19.4  | 2260                 | 52    | 1.0     | 25-Sep    | 35.1    | 18.1 | 1659     | 59     |
| Pioneer Brand    | 92Y30         | 2.3      | 68    | 1.9      | 21-Sep   | 65   | 72     | 68   | 33.9    | 20.3  | 2344                 | 51    | 1.2     | 1-Oct     | 35.2    | 18.4 | 1631     | 60     |
| Power Plus       | 20E1          | 2.0      | 69    | 1.9      | 16-Sep   | 63   | * 75   | 69   | 35.0    | 19.6  | 2440                 |       |         |           |         |      |          |        |
| Power Plus       | 23Z1          | 2.3      | 69    | 1.9      | 20-Sep   | 69   | 67     | * 70 | 34.1    | 20.0  | 2165                 |       |         |           |         |      |          |        |
| Renk             | RS 210 NR2    | 2.0      | 69    | 2.0      | 19-Sep   | 67   | 72     | 68   | 33.6    | 20.0  | 2327                 | * 59  | 1.2     | 28-Sep    | 34.6    | 18.7 | 1897     | * 64   |
| Renk             | RS 211 NR2    | 2.1      | 64    | 1.8      | 20-Sep   | 68   | 65     | 60   | 33.6    | 19.7  | 2069                 |       |         |           |         |      |          |        |
| Renk             | RS 241 R2     | 2.4      | * 78  | 2.1      | 24-Sep   | * 77 | * 80   | * 76 | 34.2    | 19.2  | 2567                 |       |         |           |         |      |          |        |
| Steyer           | 2210 RR2      | 2.2      | 70    | 1.9      | 23-Sep   | * 72 | 66     | * 71 | 34.5    | 19.1  | 2123                 |       |         |           |         |      |          |        |
| Trelay           | 18RR21        | 1.8      | 68    | 2.1      | 17-Sep   | 65   | 72     | 68   | 33.6    | 20.2  | 2308                 |       |         |           |         |      |          |        |
| Trelay           | 21RR37        | 2.1      | * 73  | 1.8      | 19-Sep   | 71   | * 74   | * 73 | 33.7    | 20.1  | 2390                 |       |         |           |         |      |          |        |
| Trelay           | 23RR31        | 2.3      | 72    | 2.1      | 22-Sep   | * 72 | * 74   | * 70 | 34.9    | 19.1  | 2395                 |       |         |           |         |      |          |        |
| MEAN             |               |          | 69    | 2.0      | 18-Sep   | 70   | 70     | 68   | 34.3    | 19.6  | 2249                 | 53    | 1.1     | 25-Sep    | 35.1    | 18.4 | 1707     | 61     |
| LSD(0.10)        |               |          | 5     | 0.5      | 4        | 5    | 6      | 7    | 0.4     | 0.2   | 202                  | 5     | ns      | 4         | 0.6     | 0.3  | 180      | 4      |

<sup>\*</sup> Yields preceded by a '\*' are not significantly different (0.10 level) than the highest yielding cultivar.

<sup>&</sup>lt;sup>1</sup> Protein and Oil determinations collected at the Galesville site in 2010.

TABLE 4. NORTH-CENTRAL REGION ROUNDUP READY SOYBEAN TEST 'fDU[ Y'%cZ&L

Performance of Commercial Entries at Three North Central Wisconsin Locations. CHP=CHIPPEWA FALLS, MAR=MARSHFIELD, SEY=SEYMOUR

|                     |                          |                        | 201      | 0 3-Test A | verage           | 20   | 10 Yie     | lds   | 2010    | Comp | osition <sup>1</sup> |       | 200     | 9 3-Test | Average | ;    |          | 6-Test |
|---------------------|--------------------------|------------------------|----------|------------|------------------|------|------------|-------|---------|------|----------------------|-------|---------|----------|---------|------|----------|--------|
|                     |                          | Maturity               | Yield    | Lodging    | Maturity         | CHF  | MA         | R SEY | Protein | Oil  | Protein              | Yield | Lodging | Maturity | Protein | Oil  | Protein  | Ave.   |
| Originator/Brand    | Entry                    | Group                  |          |            |                  |      |            |       |         |      | plus Oil             |       |         |          |         |      | plus Oil | Yield  |
|                     |                          |                        | bu/A     | 1-5        | date             |      |            | 40    | %       | %    | lb/A                 | bu/A  | 1-5     | date     | %       | %    | lb/A     | bu/A   |
| Asgrow              | AG 0730                  | 0.7                    | 54       | 1.6        | 12-Sep           | 62   | 54         | 46    | 34.6    | 17.8 | 1703                 |       |         |          |         |      |          |        |
| Asgrow              | AG 1230                  | 1.2                    | 54       | 1.3        | 15-Sep           | 64   | * 60       | 39    | 35.1    | 18.0 | 1897                 |       |         |          |         |      |          |        |
| Asgrow              | AG 1431                  | 1.4                    | * 59     | 1.8        | 18-Sep           | 73   | 56         | 47    | 34.4    | 18.7 | 1783                 |       |         |          |         |      |          |        |
| Asgrow              | AG 1631                  | 1.6                    | 54       | 1.9        | 18-Sep           | 72   | 51<br>* 50 | 38    | 34.3    | 18.0 | 1611                 |       |         |          |         |      |          |        |
| Bio Gene            | BG 7140                  | 1.4                    | 54       | 1.8        | 24-Sep           | 68   | * 59       | 34    | 33.7    | 18.0 | 1824                 |       |         |          |         |      |          |        |
| Channel             | 1101R2 Brand             | 1.1                    | * 60     | 1.5        | 17-Sep           | 68   | * 61       | * 50  | 34.4    | 18.0 | 1908                 |       |         |          |         |      |          |        |
| Channel             | 1501R2 Brand             | 1.5                    | 54       | 2.3        | 17-Sep           | 65   | 57         | 39    | 34.8    | 18.1 | 1805                 |       |         |          |         |      |          |        |
| Croplan             | R2C 2070                 | 2.0                    | * 62     | 1.8        | 25-Sep           | 73   | * 59       | * 54  | 34.8    | 18.5 | 1868                 |       |         |          |         |      |          |        |
| Croplan             | RT 1992                  | 1.9                    | 52       | 1.5        | 23-Sep           | 74   | 46         | 35    | 33.4    | 18.8 | 1451                 | 50    | 1.0     | 26-Sep   | 33.5    | 19.4 | 1598     | * 51   |
| Croplan             | RC 2068                  | 2.0                    | 56       | 1.7        | 25-Sep           | 70   | 53         | 45    | 34.1    | 18.8 | 1672                 | 49    | 1.0     | 2-Oct    | 33.8    | 19.0 | 1570     | * 53   |
| ·                   |                          |                        |          |            |                  |      |            |       |         |      |                      |       |         |          |         |      |          |        |
| Croplan             | RC 2257                  | 2.2                    | * 58     | 1.7        | 22-Sep           | * 82 | 52         | 41    | 33.3    | 18.6 | 1610                 |       |         |          |         |      |          |        |
| Dairyland           | DSR-1370/R2Y             | 1.3                    | * 62     | 1.8        | 20-Sep           | 75   | * 65       | 46    | 33.4    | 18.1 | 2005                 |       |         |          |         |      |          |        |
| Dairyland           | DSR-1710/R2Y             | 1.7                    | * 57     | 1.6        | 22-Sep           | 74   | 50         | 46    | 33.8    | 17.7 | 1549                 |       |         |          |         |      |          |        |
| Dairyland           | DST19-003/R2Y            | 1.9                    | * 59     | 1.7        | 27-Sep           | 70   | 58         | * 50  | 34.5    | 16.8 | 1785                 |       |         |          |         |      |          |        |
| Dyna-Gro            | 37RY14                   | 1.4                    | 56       | 1.3        | 19-Sep           | 71   | 51         | 47    | 33.8    | 18.0 | 1592                 | * 55  | 1.0     | 1-Oct    | 33.9    | 18.7 | 1722     | * 56   |
|                     |                          |                        |          |            |                  |      |            |       |         |      |                      |       |         |          |         |      |          |        |
| Dyna-Gro            | 34RY17                   | 1.7                    | * 59     | 1.7        | 25-Sep           | 75   | * 59       | 44    | 34.7    | 18.0 | 1861                 |       |         |          |         |      |          |        |
| G2                  | 6088                     | 8.0                    | 55       | 1.3        | 15-Sep           | 69   | 48         | 48    | 34.7    | 18.4 | 1545                 |       |         |          |         |      |          |        |
| G2                  | 6090                     | 0.9                    | 52       | 1.8        | 12-Sep           | 57   | 50         | * 49  | 35.4    | 19.2 | 1639                 |       |         |          |         |      |          |        |
| G2                  | 7110                     | 1.1                    | 55       | 1.8        | 17-Sep           | 60   | 54         | * 51  | 33.3    | 18.8 | 1692                 |       |         |          |         |      |          |        |
| G2                  | 6159                     | 1.5                    | 54       | 1.6        | 19-Sep           | 64   | 51         | 48    | 33.7    | 19.1 | 1631                 | 49    | 1.0     | 26-Sep   | 34.2    | 19.4 | 1589     | * 52   |
|                     |                          |                        |          |            |                  |      |            |       |         |      |                      |       |         |          |         |      |          |        |
| G2                  | 6160                     | 1.6                    | 49       | 1.6        | 19-Sep           | 62   | 51         | 33    | 34.1    | 18.2 | 1598                 |       |         |          |         |      |          |        |
| G2                  | 7164                     | 1.6                    | 51       | 1.8        | 21-Sep           | 64   | 50         | 40    | 34.0    | 18.0 | 1567                 |       |         |          |         |      |          |        |
| G2                  | 7180                     | 1.8                    | 56       | 1.7        | 24-Sep           | 71   | 48         | 48    | 34.4    | 17.8 | 1496                 |       |         |          |         |      |          |        |
| G2                  | 7208                     | 2.0                    | 56       | 1.7        | 27-Sep           | 73   | 53         | 43    | 34.7    | 18.2 | 1602                 |       |         |          |         |      |          |        |
| Jung                | 1086 RR2                 | 8.0                    | * 59     | 1.7        | 14-Sep           | 70   | 54         | * 53  | 34.1    | 18.4 | 1702                 |       |         |          |         |      |          |        |
| lung                | 1098 RR2                 | 0.9                    | 49       | 1.8        | 16-Sep           | 61   | 49         | 36    | 34.2    | 18.2 | 1536                 | 49    | 1.0     | 26-Sep   | 34.5    | 18.7 | 1579     | 49     |
| Jung                | 1098 RR2<br>1141 RR2     | 0.9<br>1.4             | * 57     | 1.3        | 20-Sep           | 70   | 56         | 44    | 33.9    | 18.1 | 1744                 | * 54  | 1.0     | 29-Sep   |         | 18.8 | 1701     | * 55   |
| Jung                | 1141 RR2<br>1163 RR2     | 1. <del>4</del><br>1.6 | * 57     | 1.7        | 26-Sep           | * 78 | 49         | 44    | 34.6    | 18.2 | 1562                 | * 56  | 1.0     | 30-Sep   |         | 18.6 | 1799     | * 56   |
| Jung                | LS-139 RR                | 1.6                    | 57<br>49 | 1.7        | 20-Зер<br>18-Sep | 67   | 38         | 43    | 34.4    | 17.5 | 1174                 | 36    | 1.0     | oo oeb   | 55.0    | 10.0 | 1133     | 36     |
| Legacy              | LS-139 RR<br>LS-1710 RR2 | 1.2<br>1.7             | * 63     | 1.5        | 25-Sep           | * 78 | 57         | * 53  | 34.4    | 17.9 | 1784                 |       |         |          |         |      |          |        |
| Legacy<br>CONTINUED | L3-1/10 KKZ              | 1./                    | 03       | 1.0        | 20 OUP           | 70   | 01         |       | O-1T    |      | 1107                 |       |         |          |         |      |          |        |

CONTINUED

TABLE 4. NORTH-CENTRAL REGION ROUNDUP READY SOYBEAN TEST 'fDU[ Y'&'cZ&L

Performance of Commercial Entries at Three North Central Wisconsin Locations. CHP=CHIPPEWA FALLS, MAR=MARSHFIELD, SEY=SEYMOUR

|                  |               |          | 2010  | 3-Test A | verage   | 201  | I0 Yie | elds    | 2010    | Compo | osition <sup>1</sup> |       | 200     | 09 3-Test | Average | )    |          | 6-Test |
|------------------|---------------|----------|-------|----------|----------|------|--------|---------|---------|-------|----------------------|-------|---------|-----------|---------|------|----------|--------|
|                  |               | Maturity | Yield | Lodging  | Maturity | CHP  | MAI    | R SEY 2 | Protein | Oil   | Protein              | Yield | Lodging | Maturity  | Protein | Oil  | Protein  | Ave.   |
| Originator/Brand | Entry         | Group    |       |          |          |      |        |         |         |       | plus Oil             |       |         |           |         |      | plus Oil | Yield  |
|                  |               |          | bu/A  | 1-5      | date     |      |        |         | %       | %     | lb/A                 | bu/A  | 1-5     | date      | %       | %    | lb/A     | bu/A   |
| NK Brand         | S 09-N6 Brand | 0.9      | 53    | 1.7      | 16-Sep   | 66   | 46     | 48      | 33.7    | 18.8  | 1447                 | 50    | 1.0     | 23-Sep    | 35.0    | 18.2 | 1594     | * 52   |
| NK Brand         | S 13-A4 Brand | 1.3      | 52    | 1.6      | 16-Sep   | 70   | 47     | 40      | 34.9    | 18.2  | 1499                 |       |         |           |         |      |          |        |
| NK Brand         | S 17-G8 Brand | 1.7      | * 58  | 1.6      | 19-Sep   | 72   | 58     | 44      | 33.9    | 18.2  | 1823                 |       |         |           |         |      |          |        |
| NuTech           | 0889 RR       | 8.0      | 54    | 2.0      | 14-Sep   | 67   | 55     | 40      | 34.5    | 18.9  | 1751                 |       |         |           |         |      |          |        |
| NuTech           | 6122          | 1.2      | 51    | 1.4      | 15-Sep   | 68   | 46     | 39      | 34.4    | 17.4  | 1417                 |       |         |           |         |      |          |        |
| NuTech           | 6145          | 1.4      | * 57  | 1.4      | 20-Sep   | 72   | 51     | 47      | 33.1    | 18.7  | 1586                 | 50    | 1.0     | 3-Oct     | 34.0    | 19.0 | 1592     | * 53   |
| NuTech           | 6205+         | 1.5      | * 57  | 1.5      | 28-Sep   | 73   | 46     | * 53    | 32.9    | 18.7  | 1437                 |       |         |           |         |      |          |        |
| NuTech           | 1717 RN       | 1.7      | 54    | 1.7      | 23-Sep   | * 76 | 50     | 36      | 32.9    | 19.2  | 1568                 | * 53  | 1.0     | 2-Oct     | 33.4    | 19.4 | 1672     | * 54   |
| NuTech           | 1808 RN       | 1.8      | * 57  | 1.4      | 26-Sep   | 73   | 53     | 44      | 33.9    | 18.4  | 1655                 | 49    | 1.0     | 5-Oct     | 34.5    | 18.6 | 1560     | * 53   |
| NuTech           | 6195          | 1.9      | * 61  | 1.6      | 28-Sep   | * 76 | 57     | * 49    | 34.3    | 17.6  | 1759                 |       |         |           |         |      |          |        |
| O'Brien          | O'Soy 150 RR  | 1.6      | 51    | 1.7      | 24-Sep   | 66   | 47     | 39      | 35.0    | 18.0  | 1491                 |       |         |           |         |      |          |        |
| Pioneer Brand    | 90Y80         | 0.8      | 49    | 1.9      | 10-Sep   | 64   | 43     | 39      | 33.7    | 19.8  | 1370                 |       |         |           |         |      |          |        |
| Pioneer Brand    | 91M01         | 1.2      | 53    | 2.3      | 15-Sep   | 64   | 49     | 45      | 33.5    | 20.2  | 1582                 |       |         |           |         |      |          |        |
| Pioneer Brand    | 91Y80         | 1.8      | * 58  | 1.8      | 25-Sep   | 63   | 53     | * 58    | 34.6    | 18.2  | 1667                 | 48    | 1.0     | 1-Oct     | 34.0    | 19.1 | 1541     | * 53   |
| Pioneer Brand    | 91Y90         | 1.9      | * 61  | 1.3      | 25-Sep   | 72   | 51     | * 59    | 34.9    | 18.0  | 1628                 | 51    | 1.0     | 30-Sep    | 34.8    | 18.0 | 1600     | * 56   |
| Renk             | RS 140 NR2    | 1.4      | 56    | 1.3      | 20-Sep   | 75   | 53     | 39      | 33.8    | 17.9  | 1639                 | 51    | 1.0     | 7-Oct     | 34.1    | 18.5 | 1600     | * 53   |
| Renk             | RS 141 NR2    | 1.4      | 52    | 1.8      | 22-Sep   | 65   | 53     | 38      | 33.7    | 17.8  | 1648                 |       |         |           |         |      |          |        |
| Renk             | RS 161 NR2    | 1.6      | * 58  | 2.3      | 25-Sep   | 72   | 54     | 48      | 35.6    | 17.2  | 1724                 |       |         |           |         |      |          |        |
| Renk             | RS 181 NR2    | 1.8      | * 64  | 1.8      | 27-Sep   | * 81 | * 59   | * 51    | 33.2    | 18.5  | 1843                 |       |         |           |         |      |          |        |
| Trelay           | 14RR61        | 1.4      | 56    | 1.5      | 20-Sep   | 69   | 49     | * 49    | 33.7    | 18.1  | 1537                 |       |         |           |         |      |          |        |
| Trelay           | 16RR78        | 1.6      | * 57  | 2.1      | 23-Sep   | 69   | 55     | 47      | 35.6    | 17.2  | 1742                 |       |         |           |         |      |          |        |
| Trelay           | 18RR21        | 1.8      | * 60  | 1.6      | 27-Sep   | * 78 | 57     | 45      | 33.4    | 18.6  | 1787                 |       |         |           |         |      |          |        |
| MEAN             |               |          | 56    | 1.7      | 20-Sep   | 70   | 53     | 45      | 34.2    | 18.3  | 1650                 | 50    | 1.0     | 28-Sep    | 34.5    | 18.6 | 1593     | 53     |
| LSD(0.10)        |               |          | 7     | 0.5      | 4        | 6    | 6      | 10      | 0.3     | 0.2   | 179                  | 4     | ns      | 5         | 0.4     | 0.3  | 115      | 6      |

<sup>\*</sup> Yields preceded by a '\*' are not significantly different (0.10 level) than the highest yielding cultivar.

<sup>&</sup>lt;sup>1</sup> Protein and Oil determinations collected at the Marshfield site in 2010.

<sup>&</sup>lt;sup>2</sup> Reported soybean yields were adjusted based on a MIXED model statistical analysis that include the percent flooding as a covariate to estimate the effect of flooding on soybean productivi Results that are shaded provide the best estimate of relative variety performance.

TABLE 5. NORTHERN REGION ROUNDUP READY SOYBEAN TEST

Performance of Commercial Entries at Three Northern Wisconsin Locations.

SPD=SPOONER DRYLAND, SPI=SPOONER IRRIGATED, STR=STURGEON BAY

|                  |               |          | 2010  | 3-Test Average<br>Lodging Maturity |          | 20    | 10 Yie       | lds  | 2010 (  | Compo | sition <sup>1</sup> |       | 2       | 009-Test | Average |      |          | 6-Test |
|------------------|---------------|----------|-------|------------------------------------|----------|-------|--------------|------|---------|-------|---------------------|-------|---------|----------|---------|------|----------|--------|
|                  |               | Maturity | Yield | Lodging                            | Maturity | SPD   | ) SPI        | STR  | Protein | Oil   | Protein             | Yield | Lodging | Maturity | Protein | Oil  | Protein  | Ave.   |
| Originator/Brand | Entry         | Group    |       |                                    |          |       |              |      |         |       | plus Oil            |       |         |          |         |      | plus Oil | Yield  |
|                  |               |          | bu/A  | 1-5                                | date     |       | bu/ <i>i</i> | Д    |         | %     | lb/A                | bu/A  | 1-5     | date     | %       | %    | lb/A     | bu/A   |
| Asgrow           | AG 0730       | 0.7      | * 56  | 1.4                                | 10-Sep   | * 52  | 50           | * 67 | 34.8    | 18.0  | 2110                |       |         |          |         |      |          |        |
| Croplan          | RT 1188S      | 1.1      | 53    | 2.7                                | 20-Sep   | * 54  | 46           | 60   | 34.2    | 17.9  | 1886                |       |         |          |         |      |          |        |
| Croplan          | R2C 1669      | 1.6      | * 59  | 1.3                                | 24-Sep   | * 56  | * 57         | * 63 | 34.6    | 18.1  | 2000                |       |         |          |         |      |          |        |
| Dairyland        | DSR-0949/R2Y  | 0.9      | * 55  | 1.4                                | 17-Sep   | 50    | 51           | * 63 | 34.1    | 18.6  | 1996                |       |         |          |         |      |          |        |
| Deindend         | DOD 4045/DOV  | 4.0      | + 50  | 4.4                                | 04.0     | * = 4 | <b>54</b>    | * 62 | 00.7    | 47.0  | 4050                |       |         |          |         |      |          |        |
| Dairyland        | DSR-1215/R2Y  | 1.2      | * 56  | 1.4                                | 21-Sep   | * 54  | 51           | 63   | 33.7    | 17.9  | 1958                |       |         |          |         |      |          |        |
| Legacy           | LS-0810 RR    | 0.8      | * 56  | 1.3                                | 16-Sep   | * 54  | * 53         | 60   | 34.6    | 18.8  | 1926                |       |         |          |         |      |          |        |
| NK Brand         | S 06-W2 Brand | 0.6      | 51    | 1.7                                | 10-Sep   | 47    | 48           | 58   | 35.2    | 17.9  | 1851                | * 44  | 1.0     | 23-Sep   | 34.8    | 17.4 |          | * 48   |
| NK Brand         | S 09-N6 Brand | 0.9      | 52    | 1.3                                | 12-Sep   | 50    | 49           | 57   | 34.2    | 18.8  | 1817                | * 46  | 1.0     | 28-Sep   | 34.4    | 17.4 | 1422     | * 49   |
| Pioneer Brand    | 90Y50         | 0.5      | 52    | 1.7                                | 7-Sep    | 47    | 50           | 60   | 33.9    | 19.8  | 1901                | 40    | 1.0     | 19-Sep   | 34.5    | 18.1 | 1249     | * 46   |
| Pioneer Brand    | 90Y80         | 0.8      | 54    | 1.8                                | 7-Sep    | * 54  | * 52         | 57   | 33.6    | 20.0  | 1832                | * 44  | 1.0     | 20-Sep   | 33.6    | 19.0 | 1392     | * 49   |
| Pioneer Brand    | 91M01         | 1.2      | 49    | 2.0                                | 10-Sep   | 44    | 45           | 58   | 34.0    | 20.4  | 1895                |       | 1.0     | 20 Ocp   | 55.0    | 10.0 | 1002     | 43     |
| Renk             | RS 050 RR     | 0.5      | * 57  | 2.0                                | 11-Sep   | * 55  | 51           | * 66 | 33.7    | 19.7  | 2109                |       |         |          |         |      |          |        |
|                  |               |          | * 55  | 1.5                                | 9-Sep    | * 57  | * 52         | 57   | 34.7    | 18.6  | 1829                |       |         |          |         |      |          |        |
| Renk             | RS 061 R2     | 0.6      | 55    | 1.5                                | a-seb    | 57    | 32           | 57   | 34.7    | 10.0  | 1029                |       |         |          |         |      |          |        |
| MEAN             |               |          | 54    | 1.7                                | 13-Sep   | 52    | 50           | 61   | 34.3    | 18.7  | 1925                | 43    | 1.0     | 25-Sep   | 34.6    | 17.8 | 1343     | 48     |
| LSD(0.10)        |               |          | 4     | 0.4                                | 2        | 6     | 5            | 5    | 0.5     | 0.3   | 178                 | 4     | ns      | 3        | 0.5     | 0.3  | 127      | 3      |

<sup>\*</sup> Yields preceded by a '\*' are not significantly different (0.10 level) than the highest yielding cultivar.

<sup>&</sup>lt;sup>1</sup> Protein and Oil determinations collected at the Sturgeon Bay site in 2010.

 TABLE 6.
 SOUTHERN CONVENTIONAL AND TRAITED HERBICIDE SOYBEAN TEST (Page 1 of 2)

Performance of Public and Commercial Entries at Two Wisconsin Locations. ARL=ARLINGTON, LAN=LANCASTER

|                  |               |            |                    |       | 2       | 010 2-Tes | st Averag | е    |          | 201          | 0 Yields |       | 20      | 009 2-Te | st Avera | ige  |          | 2 - Year |
|------------------|---------------|------------|--------------------|-------|---------|-----------|-----------|------|----------|--------------|----------|-------|---------|----------|----------|------|----------|----------|
|                  |               | Maturity   | Herb. <sup>1</sup> | Yield | Lodging | Maturity  | Protein   | Oil  | Protein  | ARL          | LAN      | Yield | Lodging | Maturity | Protein  | Oil  | Protein  | Ave.     |
| Originator/Brand | Entry         | Group      | Toler.             |       |         |           |           |      | plus Oil |              |          |       |         |          |          |      | plus Oil | Yield    |
|                  |               |            |                    | bu/A  | 1-5     | date      | %         | %    | lb/A     | bu/A         | bu/A     | bu/A  | 1-5     | date     | %        | %    | lb/A     | bu/A     |
| Asgrow           | AG 2430       | 2.4        | RR                 | * 73  | 2.5     | 27-Sep    | 33.1      | 19.0 | 2262     | * 79         | * 66     |       |         |          |          |      |          |          |
| Asgrow           | AG 2830       | 2.8        | RR                 | * 74  | 3.1     | 4-Oct     | 33.0      | 18.9 | 2296     | * 79         | * 69     |       |         |          |          |      |          |          |
| Blue River       | 23FC1         | 2.3        | CN                 | * 72  | 3.5     | 20-Sep    | 34.2      | 18.5 | 2261     | 77           | * 66     |       |         |          |          |      |          |          |
| Blue River       | 25A0          | 2.5        | CN                 | * 74  | 3.0     | 26-Sep    | 33.9      | 19.2 | 2358     | 78           | * 70     |       |         |          |          |      |          |          |
| Blue River       | 26F0          | 2.6        | CN                 | 57    | 2.9     | 6-Oct     | 37.9      | 17.5 | 1892     | 62           | 52       |       |         |          |          |      |          |          |
| Blue River       | 2A71          | 2.7        | CN                 | 64    | 2.9     | 2-Oct     | 35.0      | 18.2 | 2038     | 68           | 60       | * 55  | 2.9     | 9-Oct    | 35.6     | 177  | 1748     | 59       |
| Blue River       | 29AR9         | 2.8        | CN                 | 67    | 3.2     | 1-Oct     | 33.6      | 18.0 | 2073     | 72           | 62       |       | 2.0     | 0 000    | 00.0     |      |          |          |
| Channel          | 2200R2 Brand  | 2.2        | RR                 | * 75  | 2.5     | 22-Sep    | 32.4      | 20.2 | 2362     | * 87         | 63       |       |         |          |          |      |          |          |
| Croplan          | LT 1829       | 1.8        | LL                 | 66    | 2.8     | 19-Sep    | 35.0      | 18.6 | 2115     | 71           | 61       |       |         |          |          |      |          |          |
| Croplan          | RT 2588       | 2.5        | RR                 | * 74  | 2.4     | 25-Sep    | 33.2      | 19.3 | 2333     | * 85         | 63       |       |         |          |          |      |          |          |
| -                |               |            |                    |       |         |           |           |      |          |              |          |       |         |          |          |      |          |          |
| Dairyland        | DSR-2400      | 2.4        | CN                 | 65    | 3.9     | 27-Sep    | 35.0      | 18.7 | 2068     | 72           | 57       |       |         |          |          |      |          |          |
| Dairyland        | DSR-2770/RR   | 2.7        | RR                 | * 68  | 2.7     | 4-Oct     | 34.3      | 19.0 | 2177     | 71           | * 65     |       |         |          |          |      |          |          |
| Dairyland        | DSR-2930/R2Y  |            | RR                 | * 71  | 3.5     | 5-Oct     | 33.8      | 17.7 | 2189     | 75           | * 67     |       |         |          |          |      |          |          |
| Delong           | D 2008        | 2.0        | CN                 | * 69  | 3.8     | 18-Sep    | 33.9      | 19.9 | 2217     | 72           | * 66     |       |         |          |          |      |          |          |
| FS HiSOY         | HS 23L02      | 2.3        | LL                 | * 73  | 3.9     | 29-Sep    | 35.5      | 18.1 | 2320     | * 80         | * 65     |       |         |          |          |      |          |          |
| FS HiSOY         | HS 25L80      | 2.5        | LL                 | * 75  | 3.8     | 29-Sep    | 33.0      | 19.6 | 2365     | * 86         | 64       | * 59  | 2.3     | 7-Oct    | 33.6     | 18.7 | 1837     | * 67     |
| Hughes           | 338 LL        | 2.4        | LL                 | * 70  | 3.7     | 28-Sep    | 33.5      | 19.5 | 2236     | 74           | * 66     |       | 0       | . •••    | 00.0     |      |          | •.       |
| Hughes           | 454 RR        | 2.5        | RR                 | * 68  | 3.1     | 27-Sep    | 34.6      | 19.1 | 2199     | 69           | * 67     |       |         |          |          |      |          |          |
| Jung             | 1248 RR2      | 2.4        | RR                 | * 72  | 1.9     | 18-Sep    | 33.6      | 19.6 | 2291     | * 81         | 63       |       |         |          |          |      |          |          |
| NK Brand         | S 21-N6 Brand | 2.1        | RR                 | * 69  | 3.6     | 20-Sep    | 33.5      | 19.7 | 2184     | 70           | * 67     | * 56  | 1.6     | 28-Sep   | 34.1     | 19.1 | 1764     | * 62     |
| NII S            | 0.00.07       | 0.0        | 011                |       |         |           |           |      |          |              |          |       |         |          |          |      |          |          |
| NK Brand         | S 20-G7       | 2.0        | CN                 | 63    | 3.1     | 21-Sep    | 36.2      | 18.9 | 2065     | 65           | 60       |       |         |          |          |      |          |          |
| NK Brand         | S 23-T5       | 2.3        | CN                 | * 70  | 3.3     | 20-Sep    | 33.9      | 18.6 | 2183     | 72           | * 67     |       |         |          |          |      |          |          |
| NK Brand         | S 26-F9       | 2.6        | CN                 | 58    | 3.8     | 30-Sep    | 35.5      | 18.8 | 1880     | 59           | 56       |       |         |          |          |      |          |          |
| NuTech           | 3248 L        | 2.2<br>2.4 | LL<br>RR           | * 74  | 3.7     | 30-Sep    | 33.1      | 19.6 | 2337     | * 87<br>* 70 | 61       |       |         |          |          |      |          |          |
| NuTech           | 6244          | 2.4        | KK                 | * 69  | 2.0     | 28-Sep    | 32.7      | 19.1 | 2149     | * 79         | 59       |       |         |          |          |      |          |          |
| NuTech           | 3255 L        | 2.4        | LL                 | * 71  | 2.9     | 30-Sep    | 34.3      | 18.5 | 2233     | 77           | * 65     |       |         |          |          |      |          |          |
| NuTech           | 3280 L        | 2.5        | LL                 | 65    | 2.7     | 2-Oct     | 34.6      | 18.5 | 2051     | 68           | 61       |       |         |          |          |      |          |          |
| O'Brien          | O'Soy 164 LL  | 1.6        | LL                 | 64    | 3.8     | 15-Sep    | 33.9      | 18.8 | 2012     | 67           | 61       |       |         |          |          |      |          |          |
| O'Brien          | O'Soy 201 C   | 2.1        | CN                 | 64    | 4.3     | 20-Sep    | 32.5      | 20.5 | 2022     | 71           | 57       |       |         |          |          |      |          |          |
| Pioneer Brand    | 92Y80         | 2.8        | RR                 | * 70  | 3.1     | 28-Sep    | 35.5      | 19.2 | 2301     | * 80         | 60       |       |         |          |          |      |          |          |

TABLE 6. SOUTHERN CONVENTIONAL AND TRAITED HERBICIDE SOYBEAN TEST (Page 2 of 2)

Performance of Public and Commercial Entries at Two Wisconsin Locations. ARL=ARLINGTON, LAN=LANCASTER

|                  |            |          |                    |       | 2       | 010 2-Tes | st Avera | ge   |          | 2010 | Yields |       | 20      | 009 2-Te | st Avera | ige  |          | 2 - Year |
|------------------|------------|----------|--------------------|-------|---------|-----------|----------|------|----------|------|--------|-------|---------|----------|----------|------|----------|----------|
|                  |            | Maturity | Herb. <sup>1</sup> | Yield | Lodging | Maturity  | Protein  | Oil  | Protein  | ARL  | LAN    | Yield | Lodging | Maturity | Protein  | Oil  | Protein  | Ave.     |
| Originator/Brand | Entry      | Group    | Toler.             |       |         |           |          |      | plus Oil |      |        |       |         |          |          |      | plus Oil | Yield    |
| ,                |            |          |                    | bu/A  | 1-5     | date      | %        | %    | lb/A     | bu/A | bu/A   | bu/A  | 1-5     | date     | %        | %    | lb/A     | bu/A     |
| Public           | MN 1005    | 1.0      | CN                 | 53    | 4.8     | 11-Sep    | 33.8     | 20.1 | 1692     | 63   | 42     | 43    | 3.0     | 19-Sep   | 35.1     | 18.6 | 1354     | 48       |
| Public           | Deuel      | 1.1      | CN                 | 63    | 4.5     | 12-Sep    | 33.8     | 19.9 | 2027     | 67   | 59     | 46    | 3.0     | 19-Sep   | 35.7     | 18.3 | 1474     | 54       |
| Public           | MN 1410    | 1.4      | CN                 | * 68  | 4.2     | 16-Sep    | 35.0     | 19.4 | 2219     | 74   | 62     | * 50  | 2.3     | 23-Sep   | 36.1     | 18.4 | 1633     | 59       |
| Public           | MN 1505 SP | 1.5      | CN                 | 57    | 4.2     | 14-Sep    | 37.0     | 18.4 | 1901     | 63   | 51     |       |         |          |          |      |          |          |
| Public           | IA 1006    | 1.6      | CN                 | 56    | 4.7     | 15-Sep    | 33.9     | 19.2 | 1776     | 60   | 52     | 45    | 2.6     | 26-Sep   | 35.0     | 18.1 | 1444     | 51       |
| 5                |            |          | 011                |       |         |           |          |      |          |      |        |       |         |          |          |      |          |          |
| Public           | IA 1022    | 1.7      | CN                 | * 69  | 4.2     | 19-Sep    | 32.3     | 20.5 | 2189     | 75   | 63     | 47    | 2.0     | 24-Sep   |          | 19.5 |          | 58       |
| Public           | MN 1701 SN | 1.7      | CN                 | 64    | 4.5     | 18-Sep    | 34.9     | 18.9 | 2045     | 68   | 59     | * 48  | 2.5     | 28-Sep   |          | 18.2 | 1562     | 56       |
| Public           | Davidson   | 2.2      | CN                 | 67    | 3.2     | 23-Sep    | 33.8     | 18.3 | 2080     | 73   | 60     | * 51  | 2.1     | 27-Sep   |          | 17.5 | 1616     | 59       |
| Viking           | O.1706 N   | 1.7      | CN                 | 63    | 3.3     | 19-Sep    | 34.4     | 18.9 | 1995     | 68   | 57     | * 55  | 1.5     | 19-Sep   |          | 18.3 | 1743     | 59       |
| Viking           | 2020 N     | 2.0      | CN                 | 64    | 4.0     | 20-Sep    | 34.8     | 18.1 | 2032     | 64   | 64     | 46    | 2.4     | 22-Sep   | 35.2     | 18.2 | 1454     | 55       |
| A CILL           | 0.0000     | 0.0      | ON                 |       |         | 40.0      |          | 400  | 0.4.40   |      |        |       |         |          |          |      |          |          |
| Viking           | O.2022     | 2.0      | CN                 | 67    | 4.0     | 19-Sep    | 33.4     | 19.8 | 2143     | 74   | 60     |       |         | o= 0     |          | 4-0  | 1001     |          |
| Viking           | O.2078 N   | 2.0      | CN                 | 67    | 2.8     | 20-Sep    | 34.3     | 19.1 | 2124     | 71   | 62     | * 51  | 1.4     | 25-Sep   |          | 17.8 | 1624     | 59       |
| Viking           | O.2265     | 2.2      | CN                 | 65    | 3.1     | 22-Sep    | 33.5     | 19.1 | 2051     | 68   | 62     | * 54  | 2.0     | 29-Sep   | 35.0     | 18.2 | 1707     | 59       |
| Viking           | 2375 N     | 2.5      | CN                 | 67    | 1.7     | 21-Sep    | 33.7     | 19.9 | 2149     | 72   | 62     |       |         |          |          |      |          |          |
| Mana             |            |          |                    | 67    | 2.4     | 00.0      | 24.4     | 10.1 | 0400     | 70   | C4     | 50    | 0.4     | 20.0     | 25.4     | 40.0 | 4040     | F0       |
| Mean             |            |          |                    | 67    | 3.4     | 23-Sep    | 34.1     | 19.1 | 2129     | 72   | 61     | 50    | 2.1     | 26-Sep   |          | 18.2 | 1613     | 58       |
| LSD(0.10)        |            |          |                    | 7     | 0.9     | 3         | 0.9      | 0.4  | 212      | 8    | 5      | 12    | 1.1     | 7        | 1.1      | 0.9  | 390      | 7        |
|                  |            |          |                    |       |         |           |          |      |          |      |        |       |         |          |          |      |          |          |

<sup>\*</sup> Yields preceded by a '\*' are not significantly different (0.10 level) than the highest yielding cultivar.

<sup>&</sup>lt;sup>1</sup> Herb. Toler.; Herbicide Tolerance: CN = Conventional herbicide, LL = = Tolerance to Ignite herbicide, RR = Tolerance to glyphosate herbicide.

TABLE 7. NORTH CENTRAL CONVENTIONAL AND TRAITED HERBICIDE SOYBEAN TEST (Page 1 of 2)

Performance of Public and Commercial Entries at Marshfield WI.

|                  |               |          |        |       | 2010    |          |         |      |          |       | 2009   | 9        |         |      | 2 - Year |       |
|------------------|---------------|----------|--------|-------|---------|----------|---------|------|----------|-------|--------|----------|---------|------|----------|-------|
|                  |               | Maturity | Herb.1 | Yield | Lodging | Maturity | Protein | Oil  | Protein  | Yield | Lodgir | Maturity | Protein | Oil  | Protein  | Ave.  |
| Originator/Brand | Entry         | Group    | Toler. |       |         |          |         |      | plus Oil |       | _      |          |         |      | plus Oil | Yield |
|                  |               |          |        | bu/A  | 1-5     | date     | %       | %    | lb/A     | bu/A  | 1-5    | date     | %       | %    | lb/A     | bu/A  |
| Asgrow           | AG 1230       | 1.2      | RR     | * 60  | 1.0     | 19-Sep   | 34.7    | 17.8 | 1878     |       |        |          |         |      |          |       |
| Asgrow           | AG 1431       | 1.4      | RR     | 58    | 1.0     | 21-Sep   | 34.5    | 18.6 | 1836     |       |        |          |         |      |          |       |
| Blue River       | 06F8          | 0.6      | CN     | 52    | 2.0     | 12-Sep   | 33.1    | 19.7 | 1647     |       |        |          |         |      |          |       |
| Blue River       | 10F1          | 1.0      | CN     | 50    | 1.0     | 10-Sep   |         | 18.6 | 1612     |       |        |          |         |      |          |       |
| Blue River       | 11A1          | 1.1      | CN     | 55    | 1.8     | 18-Sep   | 34.2    | 18.6 | 1729     |       |        |          |         |      |          |       |
| Blue River       | 14F1          | 1.4      | CN     | 47    | 1.0     | 20-Sep   | 35.7    | 18.8 | 1542     |       |        |          |         |      |          |       |
| Blue River       | 1F44          | 1.4      | CN     | 46    | 1.5     | 20-Sep   | 37.3    | 17.5 | 1524     |       |        |          |         |      |          |       |
| Blue River       | 16A7          | 1.6      | CN     | 53    | 1.0     | 21-Sep   | 33.7    | 18.1 | 1647     | 45    | 1.0    | 27-Sep   | 34.1    | 17.5 | 1400     | 49    |
| Channel          | 1501R2 Brand  | 1.5      | RR     | 51    | 2.3     | 21-Sep   | 34.8    | 18.2 | 1622     |       |        | •        |         |      |          |       |
| Croplan          | LT 1519       | 1.5      | LL     | 57    | 1.8     | 21-Sep   | 33.7    | 17.9 | 1768     |       |        |          |         |      |          |       |
| Croplan          | LT 1829       | 1.8      | LL     | 53    | 1.5     | 28-Sep   | 35.3    | 17.5 | 1667     |       |        |          |         |      |          |       |
| Dairyland        | DSR-1370/R2Y  | 1.3      | RR     | * 64  | 1.3     | 23-Sep   | 33.3    | 18.1 | 1973     |       |        |          |         |      |          |       |
| Delong           | D 2008        | 2.0      | CN     | 55    | 1.8     | 26-Sep   |         | 18.9 | 1720     |       |        |          |         |      |          |       |
| Dyna-Gro         | 37RY14        | 1.4      | RR     | * 60  | 1.0     | 27-Sep   |         | 17.9 | 1933     |       |        |          |         |      |          |       |
| Excel            | 7122 STS      | 1.2      | STS    | * 60  | 1.8     | 21-Sep   |         | 18.0 | 1875     |       |        |          |         |      |          |       |
| G2               | 7164          | 1.6      | RR     | 51    | 1.5     | 25-Sep   | 33.8    | 18.1 | 1626     |       |        |          |         |      |          |       |
| Legacy           | LS-1710 RR2   | 1.7      | RR     | 54    | 1.0     | 28-Sep   | 34.6    | 17.7 | 1691     |       |        |          |         |      |          |       |
| NK Brand         | S 17-G8 Brand | 1.7      | RR     | * 62  | 1.3     | 25-Sep   |         | 18.1 | 1932     |       |        |          |         |      |          |       |
| NK Brand         | X 07          | 0.7      | CN     | 49    | 3.0     | 14-Sep   |         | 17.2 | 1624     |       |        |          |         |      |          |       |
| NK Brand         | S 14-P6       | 1.4      | CN     | 47    | 1.0     | 17-Sep   |         | 18.8 | 1547     |       |        |          |         |      |          |       |
| NK Brand         | S 18-R6       | 1.8      | CN     | 53    | 1.0     | 20-Sep   | 33.7    | 18.6 | 1678     |       |        |          |         |      |          |       |
| NK Brand         | S 20-G7       | 2.0      | CN     | 56    | 1.8     | 29-Sep   |         | 18.1 | 1806     |       |        |          |         |      |          |       |
| NuTech           | 6205+         | 1.5      | RR     | 51    | 1.3     | 28-Sep   | 33.2    | 18.5 | 1576     |       |        |          |         |      |          |       |
| NuTech           | 3199 L        | 1.9      | LL     | 57    | 2.0     | 1-Oct    | 35.4    | 17.6 | 1815     |       |        |          |         |      |          |       |
| O'Brien          | O'Soy 164 LL  | 1.6      | LL     | 56    | 1.5     | 25-Sep   | 33.9    | 17.7 | 1734     |       |        |          |         |      |          |       |

TABLE 7. NORTH CENTRAL CONVENTIONAL AND TRAITED HERBICIDE SOYBEAN TEST (Page 2 of 2)

Performance of Public and Commercial Entries at Marshfield WI.

|                  |             |          |        | 2010  |         |          |         |      |          |       |        | 2009       | )       |      |          | 2 - Year |
|------------------|-------------|----------|--------|-------|---------|----------|---------|------|----------|-------|--------|------------|---------|------|----------|----------|
|                  |             | Maturity | Herb.1 | Yield | Lodging | Maturity | Protein | Oil  | Protein  | Yield | Lodgir | n Maturity | Protein | Oil  | Protein  | Ave.     |
| Originator/Brand | Entry       | Group    | Toler. |       |         |          |         |      | plus Oil |       |        |            |         |      | plus Oil | Yield    |
|                  |             |          |        | bu/A  | 1-5     | date     | %       | %    | lb/A     | bu/A  | 1-5    | date       | %       | %    | lb/A     | bu/A     |
| O'Brien          | O'Soy 201 C | 2.1      | CN     | 56    | 1.5     | 26-Sep   | 32.5    | 19.4 | 1756     |       |        |            |         |      |          |          |
| Pioneer Brand    | 91Y80       | 1.8      | RR     | 53    | 1.0     | 25-Sep   | 34.5    | 18.3 | 1675     |       |        |            |         |      |          |          |
| Public           | MN 0302     | 0.3      | CN     | 38    | 1.3     | 6-Sep    | 35.6    | 18.5 | 1221     | 34    | 1.0    | 17-Sep     | 34.6    | 18.5 | 1086     | 36       |
| Public           | Sheyenne    | 0.7      | CN     | 44    | 1.8     | 11-Sep   | 34.9    | 18.1 | 1412     |       |        |            |         |      |          |          |
| Public           | Prosoy      | 0.8      | CN     | 48    | 1.5     | 16-Sep   | 37.7    | 17.5 | 1592     |       |        |            |         |      |          |          |
|                  |             |          |        |       |         |          |         |      |          |       |        |            |         |      |          |          |
| Public           | MN 1005     | 1.0      | CN     | 49    | 2.5     | 14-Sep   | 33.9    | 19.3 | 1551     | 47    | 1.0    | 27-Sep     |         | 18.6 |          | 48       |
| Public           | Deuel       | 1.1      | CN     | 53    | 2.5     | 23-Sep   | 35.4    | 18.0 | 1706     | 53    | 1.0    | 30-Sep     |         | 17.5 | 1668     | * 53     |
| Public           | MN 1410     | 1.4      | CN     | 56    | 1.8     | 24-Sep   | 34.9    | 18.6 | 1802     | * 57  | 1.0    | 29-Sep     | 35.2    | 18.5 | 1848     | * 57     |
| Public           | MN 1505 SP  | 1.5      | CN     | 42    | 1.3     | 25-Sep   | 37.2    | 17.5 | 1365     |       |        |            |         |      |          |          |
| Public           | IA 1006     | 1.6      | CN     | 52    | 2.5     | 20-Sep   | 34.2    | 18.0 | 1634     | * 58  | 1.0    | 3-Oct      | 34.2    | 17.9 | 1818     | * 55     |
|                  |             |          |        |       |         |          |         |      |          |       |        |            |         |      |          |          |
| Public           | IA 1022     | 1.7      | CN     | 58    | 1.8     | 25-Sep   | 32.6    | 19.4 | 1803     | 50    | 1.0    | 4-Oct      | 32.5    | 18.9 | 1544     | * 54     |
| Public           | MN 1701 SN  | 1.7      | CN     | 52    | 2.0     | 26-Sep   | 33.9    | 18.1 | 1631     | * 54  | 1.0    | 6-Oct      | 35.5    | 17.5 | 1721     | * 53     |
| Public           | Davidson    | 2.2      | CN     | 56    | 1.5     | 25-Sep   | 34.4    | 16.9 | 1722     |       |        |            |         |      |          |          |
| Mean             |             |          |        | 53    | 1.6     | 21-Sep   | 34.6    | 18.2 | 1680     | 49    | 1.0    | 2-Oct      | 34.7    | 17.9 | 1538     | 51       |
| LSD(0.10)        |             |          |        | 5     | 0.5     | ·        | 0.4     | 0.3  | 162      | 4     | ns     |            | 0.4     | 0.3  | 136      | 5        |

<sup>\*</sup> Yields preceded by a '\*' are not significantly different (0.10 level) than the highest yielding cultivar.

<sup>&</sup>lt;sup>1</sup> Herb. Toler. ; Herbicide Tolerance : CN = Conventional herbicide , LL = = Tolerance to Ignite herbicide, STS = Tolerance to Sulfonylurea herbicides, RR = Tolerance to glyphosate herbicide.

TABLE 8. SOYBEAN WHITE MOLD TEST

Performance of Commercial Entries In White Mold Disease Field Environment at Arlington, WI.

|                  |              |                   |                              | 2010  |                            |         | 200   | 9                          | 2-Y     | 'ear  |                            |
|------------------|--------------|-------------------|------------------------------|-------|----------------------------|---------|-------|----------------------------|---------|-------|----------------------------|
| Originator/Brand | Entry        | Maturity<br>Group | Herb. <sup>1</sup><br>Toler. | Yield | White<br>Mold <sup>2</sup> | Lodging | Yield | White<br>Mold <sup>2</sup> | Lodging | Yield | White<br>Mold <sup>2</sup> |
|                  |              |                   |                              | bu/A  | %                          | 1-5     | bu/A  | %                          | 1-5     | bu/A  | %                          |
| Dairyland        | DSR-1100/RR  | 1.1               | RR                           | 72    | 3                          | 1.5     | 46    | 14                         | 1.5     | * 59  | 9                          |
| Dairyland        | DSR-1807/R2Y | 1.7               | RR                           | 76    | 3                          | 1.5     |       |                            |         |       |                            |
| Dairyland        | DSR-2118     | 2.1               | CN                           | 63    | 16                         | 1.0     | * 50  | 41                         | 1.0     | * 57  | 29                         |
| FS HiSOY         | HS 2166      | 2.1               | RR                           | * 82  | 0                          | 1.3     |       |                            |         |       |                            |
| FS HiSOY         | HS 21A02     | 2.1               | RR                           | * 85  | 2                          | 1.3     |       |                            |         |       |                            |
| FS HiSOY         | HS 22R70     | 2.2               | RR                           | * 81  | 1                          | 1.8     | * 46  | 46                         | 1.0     | * 64  | 24                         |
| FS HiSOY         | HS 23A02     | 2.3               | RR                           | * 78  | 0                          | 2.0     |       |                            |         |       |                            |
| FS HiSOY         | HS 24A01     | 2.4               | RR                           | * 87  | 3                          | 1.8     |       |                            |         |       |                            |
| FS HiSOY         | HS 24R91     | 2.4               | RR                           | * 81  | 5                          | 2.0     | 37    | 53                         | 1.0     | * 59  | 29                         |
| FS HiSOY         | HS 25A02     | 2.5               | RR                           | * 80  | 2                          | 1.5     |       |                            |         |       |                            |
| Pioneer Brand    | 91M01        | 1.2               | RR                           | 68    | 4                          | 2.0     |       |                            |         |       |                            |
| Pioneer Brand    | 91Y90        | 1.9               | RR                           | 71    | 2                          | 1.3     |       |                            |         |       |                            |
| Pioneer Brand    | 92Y30        | 2.3               | RR                           | * 81  | 0                          | 1.0     |       |                            |         |       |                            |
| Pioneer Brand    | 92Y51        | 2.5               | RR                           | 76    | 4                          | 1.5     |       |                            |         |       |                            |
| MEAN             |              |                   |                              | 77    | 3                          | 1.5     | 47    | 43                         | 1.0     | 60    | 23                         |
| LSD(0.10)        |              |                   |                              | 10    | ns                         | 0.5     | 8     | 24                         | ns      | 9     |                            |

<sup>\*</sup> Yields preceded by a '\*' are not significantly different (0.10 level) than the highest yielding cultivar.

<sup>&</sup>lt;sup>1</sup> Herbicide Tolerance : RR= Tolerance to glyphosate herbicide , CN = Conventional herbicide tolerance.

<sup>&</sup>lt;sup>2</sup> White Mold data is expressed as a percent of diseased plants.

TABLE 9. SOYBEAN CYST NEMATODE TEST

Performance of Commercial Roundup Ready Entries In SCN Disease Field Environment at East Troy and Hancock, WI.

|               |               |         |              |       | 2010      | 2-Test A   | verage             |         |       |            |                    | 2                  | :010  |            |                    |                    | 2 Year |
|---------------|---------------|---------|--------------|-------|-----------|------------|--------------------|---------|-------|------------|--------------------|--------------------|-------|------------|--------------------|--------------------|--------|
|               |               |         | SCN          |       |           |            |                    |         |       | Eas        | Troy               |                    |       | Hand       | ock                |                    | Ave.   |
|               |               | Maturit | y Resistance | Yield | Egg Co    | ounts 2    |                    |         | Yield | Egg Co     | ounts <sup>2</sup> |                    | Yield | Egg Co     | ounts <sup>2</sup> |                    | Yield  |
| Originator/Br | and Entry     | Group   | Source       |       | Spring (i | ) Fall (f) | Pf/Pi <sup>3</sup> | Lodging |       | Spring (i) | Fall (f)           | Pf/Pi <sup>3</sup> |       | Spring (i) | Fall (f)           | Pf/Pi <sup>3</sup> |        |
|               |               |         |              | bu/A  |           |            |                    | 1-5     | bu/A  |            |                    |                    | bu/A  |            |                    |                    | bu/A   |
| G2            | 7208          | 2.0     | PI 88788     | 67    | 1842      | 1500       | 0.8                | 1.0     | 67    | 1617       | 567                | 0.4                | * 66  | 2067       | 2433               | 1.3                | * 67   |
| G2            | 7212          | 2.1     | PI 88788     | 66    | 2625      | 2383       | 1.0                | 1.0     | 67    | 1567       | 433                | 0.5                | * 65  | 3684       | 4333               | 1.5                | * 66   |
| G2            | 7230          | 2.3     | PI 88788     | 68    | 2925      | 1900       | 2.3                | 2.0     | * 72  | 4083       | 1283               | 8.0                | 63    | 1767       | 2517               | 3.7                |        |
| G2            | 7250          | 2.5     | PI 88788     | * 73  | 2675      | 2208       | 1.8                | 2.0     | * 75  | 4583       | 2550               | 0.6                | * 70  | 767        | 1867               | 3.1                |        |
|               |               |         |              |       |           |            |                    |         |       |            |                    |                    |       |            |                    |                    |        |
| G2            | 7258          | 2.5     | PI 88788     | * 73  | 2621      | 1933       | 2.3                | 2.0     | * 76  | 3233       | 1367               | 1.3                | * 69  | 2008       | 2500               | 3.2                |        |
| Latham        | 2620          | 2.6     | PI 437654    | 55    | 1696      | 2175       | 2.4                | 1.0     | 58    | 2183       | 850                | 1.7                | 52    | 1208       | 3500               | 3.1                |        |
| NK Brand      | S 25-T7 Brand | 2.5     | PI 88788     | 67    | 2788      | 2841       | 2.2                | 1.0     | * 71  | 3284       | 2666               | 0.5                | 63    | 2292       | 3017               | 3.9                |        |
| NuTech        | 1808 RN       | 1.8     | PI 88788     | 65    | 4142      | 1867       | 2.3                | 1.0     | 65    | 7450       | 1217               | 0.5                | * 65  | 833        | 2517               | 4.0                | 65     |
|               |               |         |              |       |           |            |                    |         |       |            |                    |                    |       |            |                    |                    |        |
| NuTech        | 7222          | 2.2     | PI 88788     | 65    | 4725      | 3150       | 2.7                | 2.0     | 64    | 8217       | 3750               | 1.1                | * 65  | 1234       | 2550               | 4.3                | * 66   |
| NuTech        | 7269          | 2.6     | PI 88788     | * 71  | 2175      | 1900       | 2.0                | 2.0     | * 72  | 3400       | 1517               | 1.0                | * 69  | 950        | 2284               | 3.1                | * 69   |
| NuTech        | 2660 RN       | 2.6     | PI 88788     | * 69  | 3267      | 2758       | 2.1                | 1.0     | * 72  | 5883       | 3183               | 0.5                | * 66  | 650        | 2334               | 3.7                | * 68   |
| NK Brand      | S 26-P1       | 2.1     | Peking       | 68    | 2042      | 1317       | 1.3                | 2.0     | 69    | 3017       | 1317               | 0.7                | * 66  | 1067       | 1317               | 1.9                |        |
| -             |               |         |              |       |           |            |                    |         |       |            |                    |                    |       |            |                    |                    |        |
|               |               |         |              |       |           |            |                    |         |       |            |                    |                    |       |            |                    |                    |        |
| MEAN          |               |         |              | 67    | 2794      | 2161       | 1.9                | 1.5     | 69    | 4043       | 1725               | 8.0                | 65    | 1544       | 2597               | 3.1                | 67     |
| LSD(0.10)     |               |         |              | 4     | ns        | ns         | ns                 | ns      | 5     | ns         | ns                 | ns                 | 6     | ns         | ns                 | ns                 | 3      |
|               |               |         |              |       |           |            |                    |         |       |            |                    |                    |       |            |                    |                    |        |

<sup>\*</sup> Yields preceded by a '\*' are not significantly different (0.10 level) than the highest yielding cultivar.

<sup>&</sup>lt;sup>1</sup> WM = White Mold data is expressed as a percent of diseased plants.

<sup>&</sup>lt;sup>2</sup> Average number of eggs in one hundred cubic centimeters of soil.

<sup>&</sup>lt;sup>3</sup> Reproductive factor = final egg population (fall) / initial egg population (spring).

TABLE 10. SEED SOURCE FOR SOYBEAN ENTRIES IN 2010

| Brand             | Company Name                   | Address                                              | Phone          | Website                  |
|-------------------|--------------------------------|------------------------------------------------------|----------------|--------------------------|
| Asgrow            | Monsanto Company               | 800 N. Linbergh Bvld, St. Louis, MO, 63137           | (815) 754-4809 | www.monsanto.com         |
| Bio Gene          | Bio Gene Seeds/Van Treeck Seed | 5477 Tri County Hwy, Sardinia, OH, 45171             | (888) 862-8276 | www.biogenesees.com      |
| Blue River        | Blue River Hybrids             | 27087 Timber Road, Kelly, IA, 50134                  | (800) 320-7979 | www.blueriverorgseed.com |
| Channel           | Channel Bio                    | 1107 Overlook Drive, Preston, MN, 55965              | (507) 696-1161 | www.channelbio.com       |
| Croplan           | Winfield Solutions             | W 14024 West Point Drive, Prairie Du Sac, WI, 53578  | (608) 516-4636 | answerplot.com           |
| Dairyland         | Dairyland Seed Company Inc.    | P.O. Box 958, 3570 Hwy. H, West Bend, WI, 53095      | (800) 236-0163 | www.dairylandseed.com    |
| Dyna-Gro          | Crop Production Services       | 1216 Lawton Lane, Wanaukee, WI, 53597                | (815) 822-8759 | www.dyna-groseed.com     |
| Excel             | Van Treeck Seed Farm           | 6136 Stahl Road, Sheboybgan Falls, WI                | (920) 467-2422 |                          |
| FS Hisoy          | Growmark Inc.                  | 1701 Towanda Ave., Bloomington, IL, 61701            | (309) 557-6399 | www.fsseeds.com          |
| G2                | NuTech Seed                    | 36131 Hwy 69 N, Forest City, IA, 50436               | (641) 581-3350 | www.yieldleader.com      |
| Hughes            | Hughes Seed Farms, Inc.        | 206 N. Hughes Rd., Woodstock, IL, 60098              | (815) 338-1141 | www.hugheshybrids.com    |
| Jung              | Jung Seed Genetics             | 341 South High Street, Randolph, WI, 53956           | (800) 242-1855 | jungseedgenetics.com     |
| Legacy            | Legacy Seeds Inc.              | 1937 Spindt Drive, Waupaca, WI, 54981                | (715) 256-9313 | ww.legacyseeds.com       |
| NK Brand          | Syngenta                       | 3513 Strawberry Loop, Middleton, WI, 53562           | (608) 203-6606 | www.nk.com               |
| NK Brand / Delong | The Delong Company             | 601 Delco Drive, Clinton, WI, 53525                  | 608-676-2255x  | www.delongcompany.com    |
| NuTech            | NuTech Seed                    | 36131 Hwy 69 N, Forest City, IA, 50436               | (641) 581-3350 | www.yieldleader.com      |
| O'Brien           | O'Brien Farms, Inc.            | 552 Glenway Rd., Brooklyn, WI, 53521                 | (608) 835-3564 |                          |
| Pioneer Brand     | Pioneer Hi-Bred Intl., Inc.    | 151 St. Andrews Court, Suite 910, Mankato, MN, 56001 | (507) 625-3045 | www.pioneer.com          |
| Power Plus        | Burrus Hybrids                 | 826 Arenzville Road, Arenzville, IL, 62611           | (217) 997-5511 | www.burrusseed.com       |
| Public            | WCIA / Foundation Seeds        | 1575 Linden Drive, Madison, WI, 53706                | (608) 262-1341 | www.wisc.edu/wcia        |
| Renk              | Renk Seed                      | 6809 Wilburn Rd., Sun Prairie, WI, 53590             | (800) 289-7365 | renkseed.com             |
| Steyer            | Partners in Production, LLC    | PO Box 777, Sun Prairie, WI, 53590                   | (608) 335-2112 |                          |
| Trelay            | Trelay Seeds                   | 11623 Hwy 80, Livingston, WI, 53554                  | (608) 943-6363 | www.trelay.com           |
| Viking            | Albert Lea Seed House          | 1414 W. Main, P.O. Box 127, Albert Lea, MN, 56007    | (507) 373-3161 | www.alseed.com           |

Table 11. 2010 Temperature and Precipitation Summary.

|                 |                               | Ма         | ау        | Jui        | ne        | Ju         | lly       | Aug        | just      | Septe      | mber      |
|-----------------|-------------------------------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|
|                 | Temperature                   | Average-F° | Departure |
| Location        | Precipitation                 | Total-Inch | Departure |
| Arlington       | Temperature                   | 57.2       | 0.1       | 66.0       | -0.6      | 71.3       | 8.0       | 70.5       | 2.0       | 57.8       | -2.7      |
|                 | Precipitation                 | 4.2        | 0.7       | 7.6        | 3.6       | 9.3        | 5.4       | 4.7        | 0.5       | 4.5        | 0.9       |
|                 | Irrigation - White Mold Trial |            |           |            |           | 3.2        |           |            |           |            |           |
| Chippewa Falls  | Temperature                   | 58.7       | 0.7       | 66.3       | -0.5      | 73.0       | 1.6       | 73.1       | 4.1       | 57.7       | -1.7      |
| (Eau Claire)    | Precipitation                 | 1.7        | -2.0      | 4.8        | 0.5       | 7.7        | 3.7       | 5.6        | 0.9       | 7.4        | 3.6       |
| East Troy       | Temperature                   | 58.4       | 2.0       | 67.0       | 0.7       | 73.1       | 2.1       | 72.0       | 3.1       | 60.9       | 0.4       |
| (Burlington)    | Precipitation                 | 3.6        | 0.5       | 5.7        | 1.7       | 7.4        | 3.6       | 1.5        | -2.6      | 2.7        | -0.6      |
| Fond du Lac     | Temperature                   | 58.7       | 0.8       | 66.4       | -0.7      | 72.7       | 0.9       | 71.8       | 2.3       | 58.2       | -3.1      |
|                 | Precipitation                 | 2.7        | -0.3      | 7.7        | 4.1       | 6.9        | 3.4       | 1.3        | -2.8      | 3.9        | 0.4       |
| Galesville      | Temperature                   | 61.1       | 1.3       | 69.4       | 0.8       | 75.1       | 2.3       | 75.1       | 4.8       | 61.6       | -0.1      |
| (La Crosse)     | Precipitation                 | 3.9        | 0.2       | 8.2        | 4.4       | 4.3        | 0.0       | 4.7        | 0.2       | 9.0        | 5.1       |
| Hancock*        | Temperature                   | 59.0       | 2.5       | 66.9       | 1.2       | 72.3       | 2.7       | 72.0       | 4.7       | 57.8       | -1.2      |
| (Stevens Point) | Precipitation                 | 3.6        | 0.2       | 7.2        | 3.4       | 10.6       | 6.4       | 5.4        | 1.1       | 0.7        | -2.9      |
|                 | Irrigation                    |            |           | 2.4        |           | 2.0        |           | 1.5        |           |            |           |
| Janesville      | Temperature                   | 60.6       | 1.8       | 68.8       | 0.2       | 74.4       | 2.0       | 73.3       | 3.2       | 62.3       | 0.0       |
| (Beloit)        | Precipitation                 | 3.6        | 0.2       | 5.8        | 1.1       | 6.7        | 2.9       | 2.0        | -2.3      | 2.5        | -1.2      |
| Lancaster       | Temperature                   | 60.5       | 2.8       | 69.3       | 2.4       | 74.3       | 3.2       | 73.2       | 4.3       | 61.1       | 0.6       |
|                 | Precipitation                 | 4.6        | 0.9       | 8.5        | 3.7       | 10.2       | 6.1       | 4.9        | 0.3       | 4.2        | 1.0       |
| Marshfield      | Temperature                   | 58.1       | 2.3       | 65.5       | 0.2       | 71.9       | 2.1       | 71.3       | 4.1       | 57.2       | -0.6      |
|                 | Precipitation                 | 3.6        | -0.1      | 6.8        | 2.7       | 11.1       | 7.0       | 4.4        | 0.1       | 9.0        | 4.9       |
| Seymour         | Temperature                   | 58.8       | 2.4       | 65.3       | -0.1      | 72.5       | 2.6       | 72.6       | 5.1       | 58.3       | -0.5      |
| (Green Bay)     | Precipitation                 | 2.0        | -0.8      | 6.7        | 3.3       | 9.5        | 6.1       | 4.4        | 0.7       | 4.5        | 1.4       |
| Spooner*        | Temperature                   | 57.7       | 0.6       | 64.1       | 4.9       | 71.0       | 1.6       | 70.5       | 3.3       | 54.7       | -3.7      |
|                 | Precipitation                 | 2.9        | -0.2      | -1.0       | 1.0       | 5.7        | 1.4       | 5.4        | 8.0       | 5.3        | 1.6       |
|                 | Irrigation-Sand Trial         |            |           |            |           | 0.5        |           |            |           |            |           |
| Sturgeon Bay    | Temperature                   | 56.4       | 3.0       | 63.4       | 0.3       | 70.7       | 2.1       | 71.2       | 4.2       | 58.1       | -1.2      |
|                 | Precipitation                 | 3.0        | 0.1       | 7.9        | 4.4       | 4.5        | 1.1       | 2.6        | -1.1      | 7.5        | 4.0       |

<sup>\*</sup> Irrigation applied at Arlington White Mold, Hancock, and Spooner - Irrigated Sand Trials.

Source: Wisconsin State Climatology Office

TABLE 12. CHARACTERISTICS OF SOYBEAN VARIETIES (Page 1 of 6)

|             |              |          |          |                         |          | , ,        | •      |       |     |       |
|-------------|--------------|----------|----------|-------------------------|----------|------------|--------|-------|-----|-------|
| Originator/ |              | Maturity | Herb. 1/ | Performance<br>Shown in | SCN 3/   | PRR        |        | Colc  |     |       |
| Brand       | Entry        | Group    | Toler.   | Tables                  | Source   | Genes 4/   | Flower | Hair  | Pod | Hilun |
| Asgrow      | AG 0730      | 0.7      | RR       | 4,5                     | PI 88788 | Rps 1-k    | Р      | Т     | BR  | В     |
| Asgrow      | AG 1230      | 1.2      | RR       | 4,8                     | PI 88788 | Rps 1-c    | Р      | G     | BR  | ΙB    |
| Asgrow      | AG 1431      | 1.4      | RR       | 4,8                     | PI 88788 | Rps 1-c    | Р      | LTW   | BR  | В     |
| Asgrow      | AG 1631      | 1.6      | RR       | 3,4                     | PI 88788 | Rps 1-c    | Р      | G     | BR  | ΙB    |
| Asgrow      | AG 1831      | 1.8      | RR       | 3                       | PI 88788 | Rps 1-k    | Р      | T     | Т   | В     |
| Asgrow      | AG 1931      | 1.9      | RR       | 3                       | PI 88788 | Rps 1-c    | Р      | G     | BR  | ΙB    |
| Asgrow      | AG 2031      | 2.0      | RR       | 2,3                     | PI 88788 | Rps 1-c    | Р      | LTW   | BR  | В     |
| Asgrow      | AG 2131      | 2.1      | RR       | 2,3                     | PI 88788 | Rps 1-c    | Р      | T     | BR  | В     |
| Asgrow      | AG 2330      | 2.3      | RR       | 2,3                     | PI 88788 | Rps 1-k    | Р      | G     | Т   | ΙB    |
| Asgrow      | AG 2430      | 2.4      | RR       | 2,7                     | PI 88788 | Rps 1-c    | Р      | G     | Т   | ΙB    |
| Asgrow      | AG 2830      | 2.8      | RR       | 2,7                     | PI 88788 | Rps 1-c    | Р      | G     | Т   | ΙB    |
| Asgrow      | AG 3030      | 3.0      | RR       | 2                       | PI 88788 | Rps 1-c    | Р      | G     | BR  | ΙB    |
| Bio Gene    | BG 7140      | 1.4      | RR       | 4                       |          | ·          |        |       |     |       |
| Blue River  | 06F8         | 0.6      | CN       | 8                       |          |            |        |       |     |       |
| Blue River  | 10F1         | 1.0      | CN       | 8                       |          |            |        |       |     |       |
| Blue River  | 11A1         | 1.1      | CN       | 8                       |          |            |        |       |     |       |
| Blue River  | 14F1         | 1.4      | CN       | 8                       |          |            |        |       |     |       |
| Blue River  | 1F44         | 1.4      | CN       | 8                       |          |            |        |       |     |       |
| Blue River  | 16A7         | 1.6      | CN       | 8                       | Susc.    |            | Р      | Т     | Т   | BR    |
| Blue River  | 23FC1        | 2.3      | CN       | 7                       |          |            |        |       |     |       |
| Blue River  | 25A0         | 2.5      | CN       | 7                       |          |            |        |       |     |       |
| Blue River  | 26F0         | 2.6      | CN       | 7                       |          |            |        |       |     |       |
| Blue River  | 2A71         | 2.7      | CN       | 7                       | Susc.    |            | Р      | G     | BR  | В     |
| Blue River  | 29AR9        | 2.8      | CN       | 7                       |          |            | -      | _     |     |       |
| Channel     | 1101R2 Brand | 1.1      | RR       | 4                       |          |            |        |       |     |       |
| Channel     | 1501R2 Brand | 1.5      | RR       | 4,8                     |          |            |        |       |     |       |
| Channel     | 1800R2 Brand | 1.8      | RR       | 3                       |          |            |        |       |     |       |
| Channel     | 1901R2 Brand | 1.9      | RR       | 3                       |          |            |        |       |     |       |
| Channel     | 2000R2 Brand | 2.0      | RR       | 3                       |          |            |        |       |     |       |
| Channel     | 2200R2 Brand | 2.2      | RR       | 3,7                     |          |            |        |       |     |       |
| Croplan     | RT 1188S     | 1.1      | RR       | 5                       |          | Rps 1-c    | W      | LTW   | BR  | В     |
| Croplan     | LT 1519      | 1.5      | LL       | 8                       |          | Rps 1-k    | P      | TW    | T   | В     |
| Croplan     | R2C 1669     | 1.6      | RR       | 5                       |          | Rps 1-k    | P      | G     | Ť   | ΙΒ    |
| Croplan     | LT 1829      | 1.8      | LL       | 7,8                     |          | Rps 1-k    | P      | TW    | Ť   | В     |
| Croplan     | RT 1992      | 1.9      | RR       | 3,4                     | Susc.    | προ i-π    | W      | TW    | Ť   | T     |
| Croplan     | R2C 2070     | 2.0      | RR       | 3,4                     | Ou30.    | Rps 1-k/1c | P      | LTW   | BR  | В     |
| Croplan     | RC 2068      | 2.0      | RR       | 3,4                     |          | Rps 1-k    | P      | G     | BR  | ΙB    |
| Croplan     | RT 2092      | 2.0      | RR       | 3                       | Susc.    | ivho i-k   | W      | TW    | T   | Т     |
| Olopian     | 111 2002     | 2.0      | IXIX     | 5                       | oust.    |            | ۷V     | 1 7 7 | 1   | '     |

TABLE 12. CHARACTERISTICS OF SOYBEAN VARIETIES (Page 2 of 6)

|             |               |          |          |                         |          | ` `      |        |      |       |       |
|-------------|---------------|----------|----------|-------------------------|----------|----------|--------|------|-------|-------|
| Originator/ |               | Maturity | Herb. 1/ | Performance<br>Shown in | SCN 3/   | PRR      |        | Colc | or 5/ |       |
| Brand       | Entry         | Group    | Toler.   | Tables                  | Source   | Genes 4/ | Flower | Hair | Pod   | Hilun |
| Croplan     | RT 2127       | 2.1      | RR       | 2                       |          | Rps 1-k  | W      | LTW  | Т     | BR    |
| Croplan     | RC 2257       | 2.2      | RR       | 2,3,4                   |          | Rps 1-k  | Р      | G    | Т     | IB/BF |
| Croplan     | R2T 2440      | 2.3      | RR       | 2                       |          | Rps 1-c  | Р      | G    | BR    | BF    |
| Croplan     | RT 2489       | 2.4      | RR       | 2                       |          |          | W      | LTW  | BR    | В     |
| Croplan     | RT 2588       | 2.5      | RR       | 2,7                     |          | Rps 1-c  | W      | LTW  | BR    | В     |
| Dairyland   | DSR-0949/R2Y  | 0.9      | RR       | 5                       |          |          |        |      |       |       |
| Dairyland   | DSR-1100/RR   | 1.1      | RR       | 8                       |          |          | Р      | LTW  | Т     | Υ     |
| Dairyland   | DSR-1215/R2Y  | 1.2      | RR       | 5                       |          |          |        |      |       |       |
| Dairyland   | DSR-1370/R2Y  | 1.3      | RR       | 4,8                     |          |          |        |      |       |       |
| Dairyland   | DSR-1710/R2Y  | 1.7      | RR       | 3,4                     |          |          |        |      |       |       |
| Dairyland   | DSR-1807/R2Y  | 1.7      | RR       | 8                       |          | Rps 1-c  | М      | G    | BR    | ΙB    |
| Dairyland   | DST18-003/R2Y | 1.8      | RR       | 3                       |          |          |        |      |       |       |
| Dairyland   | DST19-003/R2Y | 1.9      | RR       | 4                       |          |          |        |      |       |       |
| Dairyland   | DSR-2011/RR   | 2.0      | RR       | 2,3                     |          |          |        |      |       |       |
| Dairyland   | DSR-2118      | 2.1      | CN       | 8                       |          |          | Р      | G    | BR    | G     |
| Dairyland   | DSR-2132/R2Y  | 2.1      | RR       | 3                       |          | Rps 1-c  | Р      | LTW  | BR    | ΙB    |
| Dairyland   | DST22-007/R2Y | 2.2      | RR       | 3                       |          | ·        |        |      |       |       |
| Dairyland   | DSR-2375/R2Y  | 2.3      | RR       | 2,3                     |          |          |        |      |       |       |
| Dairyland   | DSR-2400      | 2.4      | CN       | 7                       |          |          |        |      |       |       |
| Dairyland   | DSR-2727/R2Y  | 2.7      | RR       | 2                       |          |          |        |      |       |       |
| Dairyland   | DSR-2770/RR   | 2.7      | RR       | 2,7                     | Other    | Rps 1-k  | W      | LTW  | BR    | В     |
| Dairyland   | DSR-2930/R2Y  | 2.9      | RR       | 2,7                     | PI 88788 | Rps 1-c  | Р      | G    | BR    | ΙB    |
| Delong      | D 2008        | 2.0      | CN       | 7,8                     |          | Rps 1-c  | Р      | G    | BR    | Υ     |
| Dyna-Gro    | 37RY14        | 1.4      | RR       | 4,8                     | PI 88788 | Rps 1-c  | Р      | G    | BR    | ΙB    |
| Dyna-Gro    | 34RY17        | 1.7      | RR       | 4                       |          |          |        |      |       |       |
| Dyna-Gro    | 36RY19        | 1.9      | RR       | 3                       |          |          |        |      |       |       |
| Dyna-Gro    | 35RY21        | 2.1      | RR       | 3                       |          |          |        |      |       |       |
| Dyna-Gro    | 33RY23        | 2.3      | RR       | 2                       |          |          |        |      |       |       |
| Dyna-Gro    | 36RY24        | 2.4      | RR       | 2                       |          |          |        |      |       |       |
| Dyna-Gro    | 25N9 RR       | 2.5      | RR       | 2                       | PI 88788 |          | W      | LTW  | BR    | В     |
| Excel       | 7122 STS      | 1.2      | STS      | 8                       |          |          |        | -    | -     |       |
| FS HiSOY    | HS 2166       | 2.1      | RR       | 2,3,8                   | PI 88788 | Rps 1-c  | М      | TW   | BR    | В     |
| FS HiSOY    | HS 21A02      | 2.1      | RR       | 2,3,8                   | PI 88788 | Rps 1-c  | P      | LTW  | BR    | В     |
| FS HISOY    | HS 22R70      | 2.2      | RR       | 2,3,8                   | PI 88788 | Rps 1-k  | Р      | G    | Т     | ΙB    |
| FS HiSOY    | HS 23A02      | 2.3      | RR       | 2,8                     | PI 88788 | Rps 1-c  | Р      | TW   | BR    | В     |
| FS HiSOY    | HS 23L02      | 2.3      | LL       | 7                       | PI 88788 | 1-100.0  | Р      | G    | BR    | ΙB    |
| FS HISOY    | HS 24A01      | 2.4      | RR       | 2,8                     | Susc.    | Rps 1-c  | Р      | G    | BR    | BF    |
| FS HiSOY    | HS 24R91      | 2.4      | RR       | 2,8                     | Susc.    |          | W      | LTW  |       | В     |

TABLE 12. CHARACTERISTICS OF SOYBEAN VARIETIES (Page 3 of 6)

| Originator/ |             | Maturity | Herb. 1/ | Performance        | SCN 3/   | PRR      |        | Colc | or 5/ |       |
|-------------|-------------|----------|----------|--------------------|----------|----------|--------|------|-------|-------|
| Brand       | Entry       | Group    | Toler.   | Shown in<br>Tables | Source   | Genes 4/ | Flower | Hair | Pod   | Hilum |
| FS HiSOY    | HS 25A02    | 2.5      | RR       | 2,8                | PI 88788 |          | Р      | TW   | BR    | В     |
| FS HISOY    | HS 25L80    | 2.5      | LL       | 7                  | PI 88788 |          | Р      | G    | BR    | ΙB    |
| G2          | 6088        | 0.8      | RR       | 4                  |          |          |        |      |       |       |
| G2          | 6090        | 0.9      | RR       | 4                  |          |          |        |      |       |       |
| G2          | 7110        | 1.1      | RR       | 4                  |          |          |        |      |       |       |
| G2          | 6159        | 1.5      | RR       | 3,4                |          |          |        |      |       |       |
| G2          | 6160        | 1.6      | RR       | 3,4                |          |          |        |      |       |       |
| G2          | 7164        | 1.6      | RR       | 3,4,8              |          |          |        |      |       |       |
| G2          | 7180        | 1.8      | RR       | 3,4                |          |          |        |      |       |       |
| G2          | 7208        | 2.0      | RR       | 2,3,4,9            | PI 88788 |          |        |      |       |       |
| G2          | 7212        | 2.1      | RR       | 2,3,9              | PI 88788 |          |        |      |       |       |
| G2          | 7230        | 2.3      | RR       | 2,3,9              |          |          |        |      |       |       |
| G2          | 7249        | 2.4      | RR       | 2,3                |          |          |        |      |       |       |
| G2          | 7250        | 2.5      | RR       | 2,9                |          |          |        |      |       |       |
| G2          | 7258        | 2.5      | RR       | 2,3,9              |          |          |        |      |       |       |
| G2          | 7260        | 2.6      | RR       | 2                  |          |          |        |      |       |       |
| G2          | 7283        | 2.8      | RR       | 2                  |          |          |        |      |       |       |
| G2          | 7288        | 2.8      | RR       | 2                  |          |          |        |      |       |       |
| G2          | 7290        | 2.9      | RR       | 2                  |          |          |        |      |       |       |
| Hughes      | 338 LL      | 2.4      | LL       | 7                  | Susc.    | Rps 1-k  | Р      | LTW  | BR    | В     |
| Hughes      | 454 RR      | 2.5      | RR       | 2,7                | Susc.    |          | W      | LTW  | BR    | В     |
| Hughes      | 555 RR      | 2.5      | RR       | 2                  | PI 88788 | Rps 1-k  | W      | Т    | BR    | В     |
| Hughes      | 777 RR      | 2.7      | RR       | 2                  | PI 88788 |          | W      | LTW  | BR    | В     |
| Jung        | 1086 RR2    | 0.8      | RR       | 4                  |          |          |        |      |       |       |
| Jung        | 1098 RR2    | 0.9      | RR       | 4                  |          | Rps 1-c  | W      | G    | BR    | ΙB    |
| Jung        | 1141 RR2    | 1.4      | RR       | 4                  |          | Rps 1-c  | W      | G    | BR    | ΙB    |
| Jung        | 1163 RR2    | 1.6      | RR       | 3,4                |          | Rps 1-c  | Р      | G    | BR    | ΙB    |
| Jung        | 1196 RR2    | 1.9      | RR       | 3                  |          |          |        |      |       |       |
| Jung        | 1201 RR2    | 2.0      | RR       | 3                  |          |          |        |      |       |       |
| Jung        | 1225 RR2    | 2.2      | RR       | 2,3                |          | Rps 1-c  | Р      | G    | BR    | ΙB    |
| Jung        | 1234 RR2    | 2.3      | RR       | 2                  |          |          |        |      |       |       |
| Jung        | 1248 RR2    | 2.4      | RR       | 2,7                |          | Rps 1-c  | Р      | G    | BR    | ΙB    |
| Kruger      | K-201RR/SCN | 2.0      | RR       | 2                  | PI 88788 | Rps 1-c  | М      | TW   | BR    | В     |
| Latham      | 2620        | 2.6      | RR       | 9                  |          | •        |        |      |       |       |
| Legacy      | LS-0810 RR  | 0.8      | RR       | 5                  |          |          | W      | LTW  | BR    | BR    |
| Legacy      | LS-139 RR   | 1.2      | RR       | 4                  |          | Rps 1-k  | Р      | LTW  | Т     | В     |
| Legacy      | LS-1710 RR2 | 1.7      | RR       | 3,4,8              | PI 88788 | •        | Р      | G    | Т     | В     |
| Legacy      | LS-1909 RR  | 2.0      | RR       | 3                  | PI 88788 | Rps 1-c  | P      | LTW  |       | BR    |

TABLE 12. CHARACTERISTICS OF SOYBEAN VARIETIES (Page 4 of 6)

|             |               |          |          |                         |          |          | -      |      |     |       |
|-------------|---------------|----------|----------|-------------------------|----------|----------|--------|------|-----|-------|
| Originator/ |               | Maturity | Herb. 1/ | Performance<br>Shown in | SCN 3/   | PRR      |        | Colo |     |       |
| Brand       | Entry         | Group    | Toler.   | Tables                  | Source   | Genes 4/ | Flower | Hair | Pod | Hilum |
| Legacy      | LS-2509 RR    | 2.5      | RR       | 2                       | PI 88788 |          | W      | LTW  | BR  | В     |
| NK Brand    | S 06-W2 Brand | 0.6      | RR       | 5                       | Susc.    |          | Р      | LTW  | BR  | BR    |
| NK Brand    | X 07          | 0.7      | CN       | 8                       |          | Rps 1-c  | Р      | LTW  | BR  | Υ     |
| NK Brand    | S 09-N6 Brand | 0.9      | RR       | 4,5                     | Susc.    | Rps 1-c  | W      | LTW  | Т   | BR    |
| NK Brand    | S 13-A4 Brand | 1.3      | RR       | 4                       | Susc.    | Rps 1-k  | Р      | LTW  | Т   | В     |
| NK Brand    | S 14-P6       | 1.4      | CN       | 8                       |          | Rps 1-c  | Р      | G    | BR  | Υ     |
| NK Brand    | S 17-G8 Brand | 1.7      | RR       | 4,8                     | PI 88788 | Rps 1-c  | Р      | G    | BR  | ΙB    |
| NK Brand    | S 18-R6       | 1.8      | CN       | 8                       |          | Rps 1-a  | Р      | G    | Т   | Υ     |
| NK Brand    | S 19-A6 Brand | 1.9      | RR       | 3                       | PI 88788 |          | Р      | G    | Т   | ΙB    |
| NK Brand    | S 20-G7       | 2.0      | CN       | 7,8                     |          | Rps 1-c  | Р      | G    | BR  | Υ     |
| NK Brand    | S 21-B1 Brand | 2.1      | RR       | 2,3                     | PI 88788 |          | W      | LTW  | BR  | В     |
| NK Brand    | S 21-N6 Brand | 2.1      | RR       | 2,3,7                   | Susc.    | Rps 1-k  | Р      | LTW  | BR  | BR    |
| NK Brand    | S 26-P1       | 2.1      | RR       | 2,9                     | PI 54842 | Rps 1-k  | Р      | LTW  | BR  | В     |
| NK Brand    | S 23-A8 Brand | 2.3      | RR       | 2,3                     | PI 88788 | Rps 1-k  | W      | LTW  | BR  | В     |
| NK Brand    | S 23-T5       | 2.3      | CN       | 7                       |          | Rps 1-c  | Р      | LTW  | Т   | Υ     |
| NK Brand    | S 25-F2 Brand | 2.5      | RR       | 2                       | Susc.    | Rps 1-k  | W      | LTW  | BR  | BR    |
| NK Brand    | S 25-T7 Brand | 2.5      | RR       | 9                       |          | ·        |        |      |     |       |
| NK Brand    | S 25-T8 Brand | 2.5      | RR       | 2                       | PI 88788 |          | W      | LTW  | BR  | В     |
| NK Brand    | S 26-F9       | 2.6      | CN       | 7                       |          | Rps 3-a  | W      | G    | BR  | Υ     |
| NK Brand    | S 27-C4 Brand | 2.7      | RR       | 2                       | PI 88788 | Rps 1-k  | Р      | LTW  | Т   | В     |
| NuTech      | 0889 RR       | 0.8      | RR       | 4                       |          | ·        |        |      |     |       |
| NuTech      | 6122          | 1.2      | RR       | 4                       |          |          |        |      |     |       |
| NuTech      | 6145          | 1.4      | RR       | 4                       |          |          |        |      |     |       |
| NuTech      | 6205+         | 1.5      | RR       | 4,8                     |          |          |        |      |     |       |
| NuTech      | 1717 RN       | 1.7      | RR       | 4                       | PI 88788 |          |        |      |     |       |
| NuTech      | 1808 RN       | 1.8      | RR       | 3,4,9                   | PI 88788 |          |        |      |     |       |
| NuTech      | 3199 L        | 1.9      | LL       | 8                       |          |          |        |      |     |       |
| NuTech      | 6195          | 1.9      | RR       | 3,4                     |          |          |        |      |     |       |
| NuTech      | 7199          | 1.9      | RR       | 3                       |          |          |        |      |     |       |
| NuTech      | 7201          | 2.0      | RR       | 3                       | PI 88788 |          |        |      |     |       |
| NuTech      | 3248 L        | 2.2      | LL       | 7                       |          |          |        |      |     |       |
| NuTech      | 6224          | 2.2      | RR       | 2,3                     |          |          |        |      |     |       |
| NuTech      | 6228          | 2.2      | RR       | 2,3                     |          |          |        |      |     |       |
| NuTech      | 7222          | 2.2      | RR       | 2,3,9                   | PI 88788 |          |        |      |     |       |
| NuTech      | 7235          | 2.3      | RR       | 2                       |          |          |        |      |     |       |
| NuTech      | 3255 L        | 2.4      | LL       | 7                       |          |          |        |      |     |       |
| NuTech      | 6244          | 2.4      | RR       | 3,7                     |          |          |        |      |     |       |
| NuTech      | 3280 L        | 2.5      | LL       | 7                       |          |          |        |      |     |       |

CONTINUED

TABLE 12. CHARACTERISTICS OF SOYBEAN VARIETIES (Page 5 of 6)

| Originator/   |              | Maturity | Herb. 1/ | Performance<br>Shown in | SCN 3/   | PRR      |        | Colo | or 5/ |       |
|---------------|--------------|----------|----------|-------------------------|----------|----------|--------|------|-------|-------|
| Brand         | Entry        | Group    | Toler.   | Tables                  | Source   | Genes 4/ | Flower | Hair | Pod   | Hilum |
| NuTech        | 7251         | 2.5      | RR       | 2                       |          |          |        |      |       |       |
| NuTech        | 2660 RN      | 2.6      | RR       | 2,9                     | PI 88788 |          |        |      |       |       |
| NuTech        | 7269         | 2.6      | RR       | 9                       | PI 88788 |          |        |      |       |       |
| NuTech        | 6281         | 2.8      | RR       | 2                       |          |          |        |      |       |       |
| NuTech        | 7297         | 2.9      | RR       | 2                       |          |          |        |      |       |       |
| O'Brien       | O'Soy 150 RR | 1.6      | RR       | 3,4                     |          |          |        |      |       |       |
| O'Brien       | O'Soy 164 LL | 1.6      | LL       | 7,8                     |          |          |        |      |       |       |
| O'Brien       | O'Soy 201 C  | 2.1      | CN       | 7,8                     |          |          |        |      |       |       |
| O'Brien       | O'Soy 250 RR | 2.5      | RR       | 2,3                     |          |          |        |      |       |       |
| Pioneer Brand | 90Y50        | 0.5      | RR       | 5                       |          | Rps 1-k  | Р      | LTW  | BR    | BR    |
| Pioneer Brand | 90Y80        | 0.8      | RR       | 4,5                     |          | ·        | Р      | LTW  | Т     | BR    |
| Pioneer Brand | 91M01        | 1.2      | RR       | 4,5,8                   |          | Rps 1-k  | Р      | TW   | BR    | BR    |
| Pioneer Brand | 91Y80        | 1.8      | RR       | 3,4,8                   | PI 88788 | Rps 1-k  | W      | LTW  | Т     | В     |
| Pioneer Brand | 91Y90        | 1.9      | RR       | 2,3,4,8                 |          | ·        | W      | LTW  | BR    | BR    |
| Pioneer Brand | 92Y30        | 2.3      | RR       | 2,3,8                   | PI 88788 | Rps 1-k  | Р      | G    | BR    | IB    |
| Pioneer Brand | 92Y51        | 2.5      | RR       | 2,8                     | PI 88788 | Rps 1-k  | Р      | LTW  | Т     | В     |
| Pioneer Brand | 92Y80        | 2.8      | RR       | 2,7                     | PI 88788 | Rps 1-k  | Р      | LTW  | BR    | BR    |
| Pioneer Brand | 93M11        | 2.9      | RR       | 2                       |          | Rps 1-k  | Р      | LTW  | Т     | В     |
| Power Plus    | 20E1         | 2.0      | RR       | 2,3                     | PI 88788 | Rps 1-c  | М      | Т    | BR    | В     |
| Power Plus    | 23Z1         | 2.3      | RR       | 2,3                     | PI 88788 | Rps 1-c  | W      | LTW  | BR    | В     |
| Power Plus    | 28S1         | 2.8      | RR       | 2                       | PI 88788 | Rps 1-k  | Р      | LTW  | BR    | В     |
| Public        | MN 0302      | 0.3      | CN       | 8                       |          | ·        |        |      |       |       |
| Public        | Prosoy       | 0.8      | CN       | 8                       |          |          |        |      |       |       |
| Public        | Sheyenne     | 0.8      | CN       | 8                       |          |          |        |      |       |       |
| Public        | MN 1005      | 1.0      | CN       | 7,8                     |          |          |        |      |       |       |
| Public        | Deuel        | 1.1      | CN       | 7,8                     |          |          |        |      |       |       |
| Public        | MN 1410      | 1.4      | CN       | 7,8                     |          |          |        |      |       |       |
| Public        | MN 1505 SP   | 1.5      | CN       | 7,8                     |          |          |        |      |       |       |
| Public        | IA 1006      | 1.6      | CN       | 7,8                     |          |          |        |      |       |       |
| Public        | MN 1701 SN   | 1.7      | CN       | 7,8                     |          |          |        |      |       |       |
| Public        | IA 1022      | 1.9      | CN       | 7,8                     |          |          |        |      |       |       |
| Public        | Davidson     | 2.2      | CN       | 7,8                     |          |          |        |      |       |       |
| Renk          | RS 050 RR    | 0.5      | RR       | 5                       |          |          |        |      |       |       |
| Renk          | RS 061 R2    | 0.6      | RR       | 5                       |          |          |        |      |       |       |
| Renk          | RS 140 NR2   | 1.4      | RR       | 4                       |          |          |        |      |       |       |
| Renk          | RS 141 NR2   | 1.4      | RR       | 4                       |          |          |        |      |       |       |
| Renk          | RS 161 NR2   | 1.6      | RR       | 4                       |          |          |        |      |       |       |
| Renk          | RS 181 NR2   | 1.8      | RR       | 4                       |          |          |        |      |       |       |

CONTINUED

TABLE 12. CHARACTERISTICS OF SOYBEAN VARIETIES (Page 6 of 6)

| Originator/ |                   | Maturity | Herb. 1/ | Performance        | SCN 3/   | PRR        |        | Colo | or 5/ |       |
|-------------|-------------------|----------|----------|--------------------|----------|------------|--------|------|-------|-------|
| Brand       | Entry             | Group    | Toler.   | Shown in<br>Tables | Source   | Genes 4/   | Flower | Hair | Pod   | Hilum |
| Renk        | RS 210 NR2        | 2.0      | RR       | 3                  |          |            |        |      |       |       |
| Renk        | RS 211 NR2        | 2.1      | RR       | 3                  |          |            |        |      |       |       |
| Renk        | RS 241 R2         | 2.4      | RR       | 2,3                |          |            |        |      |       |       |
| Renk        | <b>RS 259 NRR</b> | 2.5      | RR       | 2                  |          |            |        |      |       |       |
| Renk        | RS 261 NR2        | 2.6      | RR       | 2                  |          |            |        |      |       |       |
| Renk        | RS 271 NR2        | 2.7      | RR       | 2                  |          |            |        |      |       |       |
| Renze       | R 1805            | 1.8      | RR       | 2                  |          |            |        |      |       |       |
| Steyer      | 2210 RR2          | 2.2      | RR       | 3                  |          |            |        |      |       |       |
| Steyer      | 2710 RR2          | 2.7      | RR       | 2                  | PI 88788 |            |        |      |       |       |
| Trelay      | 14RR61            | 1.4      | RR       | 4                  | PI 88788 | Rps 1-c    | Р      | G    | BR    | ΙB    |
| Trelay      | 16RR78            | 1.6      | RR       | 4                  | PI 88788 |            | Р      | G    | BR    | ΙB    |
| Trelay      | 18RR21            | 1.8      | RR       | 3,4                | PI 88788 | Rps 1-k    | Р      | G    | Т     | ΙB    |
| Trelay      | 21RR37            | 2.1      | RR       | 2,3                | PI 88788 | Rps 1-c    | Р      | G    | Т     | ΙB    |
| Trelay      | 23RR31            | 2.3      | RR       | 2,3                | PI 88788 | Rps 1-c    | Р      | TW   | BR    | В     |
| Trelay      | 25RR58            | 2.5      | RR       | 2                  | PI 88788 | Rps 1-c/1k | Р      | G    | BR    | IB    |
| Viking      | O.1706 N          | 1.7      | CN       | 7                  | PI 88788 |            | W      | LTW  | BR    | В     |
| Viking      | 2020 N            | 2.0      | CN       | 7                  | PI 88788 | Rps 1-c    | Р      | LTW  | TN    | В     |
| Viking      | O.2022            | 2.0      | CN       | 7                  |          | -          |        |      |       |       |
| Viking      | O.2078 N          | 2.0      | CN       | 7                  | PI 88788 |            | Р      | LTW  | BR    | В     |
| Viking      | O.2265            | 2.2      | CN       | 7                  | Susc.    |            | W      | Т    | BR    | BL    |
| Viking      | 2375 N            | 2.5      | CN       | 7                  |          |            |        |      |       |       |

All characteristic information is provided by the originator.

<sup>1/</sup> Herb. Toler.= Herbicide Tolerance: RR= Tolerance to glyphosate herbicide, STS = Tolerance to Sulfonylurea herbicides, LL= Tolerance to Ignite herbicide, CN= Conventional herbicide tolerance.

<sup>3/</sup> Source of SCN Resistance; Susc.=Susceptible, Other = source unknown.

<sup>4/</sup> B= Black, BF = Buff, BR= Brown, G= Gray, IB= Imperfect Black, LTW= Light Tawny, M= Mixed, P= Purple, T= Tan, TW= Tawny, W=White, Y= Yellow, IY=Imperfect Yellow.

<sup>5/</sup> PRR= Phytophthora Root Rot Resistance: PRR Genes listed designate resistance to PRR Races listed in Introduction.