Wisconsin Winter Wheat Performance Trials 2018 # **Table of Contents** | 2018 Yea | ar in Review | 4 | |-----------|---|----| | Using Da | ata to Select Top-Yielding Varieties | 4 | | Experim | ental Procedures | 5 | | Testing I | Agencies | 5 | | | 2018 Company Information | | | Table 2. | 2018 Entered Varieties and Seed Treatments | 6 | | Table 3. | 2018 Combined Winter Wheat Performance Trial Results | 8 | | Table 4. | 2018 Arlington Winter Wheat Performance Trial Results | 11 | | Table 5. | 2018 Chilton Winter Wheat Performance Trial Results | 14 | | Table 6. | 2018 Fond du Lac Winter Wheat Performance Trial Results | 17 | | Table 7. | 2018 Sharon Winter Wheat Performance Trial Results | 20 | | | LEXION | | | | | | | | | | he Wisconsin Winter Wheat Performance Trials are conducted each year to give growers information to select the best-performing varieties that will satisfy their specific goals. The performance trials are conducted each year at four locations in Wisconsin: Arlington, Chilton, Fond du Lac and Sharon. Trials include released varieties, experimental lines from University breeding programs and lines from private seed companies. The primary objective of these trials is to quantify how varieties perform at different locations and across years. Growers can use this data to help select which varieties to plant; breeders can use performance data to determine whether to release a new variety. ### Fond du Lac Cooperator: Ed Montsma Lomira silt loam 7.5 inch row spacing Applied 55 lb N/a Post-emergent herbicide: Huskie Planted: September 26, 2017 Harvested: July 19, 2018 #### Arlington Cooperator: Mike Bertram Plano silt loam 7.5 inch row spacing Applied 55 lb N/a Post-emergent herbicide: Huskie Planted: September 25, 2017 Harvested: July 18, 2018 # * Sharon Cooperator: Mike Cerny Plano silt loam 7.5 inch row spacing Applied 55 lb N/a Post-emergent herbicide: Huskie Planted: September 29, 2017 Harvested: July 18, 2018 ### Chilton Kewaunee loam 7.5 inch row spacing Applied 55 lb N/a Post-emergent herbicide: Huskie Planted: September 26, 2017 Harvested: July 24, 2018 Cooperator: Kolbe Seed Farms 2018 Year in Review Page 4 #### **Acreage and Growing Conditions** Wisconsin saw a 9% increase in winter wheat acres planted (250,000) in the 2017-2018 growing season compared to the previous year; 210,000 acres are forecasted to be harvested for grain, compared to 170,000 in 2017*. The forecasted yield for the 2018 crop is 70 bu/a, up 2 bu/a from 2017. Wheat germinated late and had poor tiller development prior to winter dormancy. This led to some thin spring stands and weed control problems. Wheat broke dormancy in late April and crop development was delayed until above average June temperature expedited development. In general the crop was relatively short in stature. Frequent rainfall events delayed or prohibited many operations to the wheat crop including spring nitrogen, herbicide and fungicide applications. Overall, winter wheat yield and test weights were below average in 2018. Wheat yields at the Arlington, Chilton, Fond du Lac and Sharon locations averaged 89, 78, 63, and 93 bu/a, respectively. * Source: USDA National Agricultural Statistics Service (www.nass.usda.gov) #### **Diseases** Statewide, the major disease of winter wheat in 2018 was Fusarium head blight (FHB) caused by *Fusarium graminearum*. FHB could be found in many fields in the southern and southeastern portions of the wheat-growing region of the state. As one moved northward, levels of FHB quickly dissipated so that just trace levels could be found. In the variety trials throughout the southern and south-central part of the state, FHB hit some varieties moderately hard, causing head damage and deformed kernels. Varieties with genetic resistance to the disease performed well, especially at the Sharon and Arlington variety trial locations. FHB was very mild at the Fond du Lac and Chilton locations. This was consistent in commercial fields in the north-central and northern locations where winter wheat is grown. Unlike the previous two seasons, stripe rust was non-existent in variety trials. We were also unable to find stripe rust in commercial fields that we scouted. This is likely due to the extremely cold winter of 2017/2018 combined with hot and dry conditions in the summer of 2018, both of which were not conducive for stripe rust. Septoria leaf blotch and leaf rust were present in low levels in some fields throughout the state. However, these two diseases were not yield-limiting in 2018. Powdery mildew was nearly non-existent in the state for the sixth straight season. Cephalosporium stripe, caused by the fungus *Cephalosporium gramineum*, was prevalent at our Fond du Lac location in 2018. The pathogen causes leaf striping and plant stunting. Cephalosporium stripe is favored by cool wet conditions and reduced tillage. # **Using Data to Select Top-Yielding Varieties** As with any crop, variety selection is the most important factor to consider in maximizing winter wheat yield and profitability. When choosing a winter wheat variety, several factors must be considered. These include winter survival, insect and disease resistance, heading date, lodging, test weight and most importantly, yield. Since no variety is ideal for every location, it is important to understand the crop environment and pest complex that affects your specific region to maximize yield. - ▶ Yield is based on the genetic potential and environmental conditions in which the crop is grown. Therefore, by diversifying the genetic pool that is planted, a grower can hedge against crop failure. Select those varieties that perform well not only in your area but also across experimental sites and years. This will increase the likelihood that, given next year's environment (which you cannot control), the variety you selected will perform well. (Table 3 gives an overview of yields across all locations.) - ▶ **Test weight** is also an important factor to consider when selecting a variety. The minimum test weight to be considered a U.S. #2 soft red winter wheat is 58 lb./bu. Wheat at lower test weights will be discounted. Both environment and pests may greatly affect test weight; therefore, selecting a variety that has a high test weight potential in your region is critical to maximizing economic gain. - ➤ Select a variety that has the **specific disease resistance** characteristics that fit your cropping needs. By selecting varieties with the appropriate level of resistance, crop yield loss may be either reduced or avoided without the need for pesticides. Careful management of resistant cultivars through crop and variety rotation are required to ensure that these characteristics are not lost. - ▶ Plant height and lodging potential are also important varietal characteristics that may be affected by your cropping system. If the wheat crop is intended for grain only, it may be important to select a variety that is short in stature and has a low potential for lodging. This may decrease yield loss due to crop spoilage and harvest loss as well as increase harvesting rate. However, if the wheat crop is to be used as silage or is to be harvested as both grain and straw, then selecting a taller variety may be warranted. # **Experimental Procedures** ## **At Planting** **Site details:** Summarized on page 3. Seedbed preparation: Conventional and no-till methods. **Seeding rate:** 1.5 million seeds per acre. **Seed treatments:** Identified in Table 2. **Fertilizer and herbicides:** Nitrogen was applied in spring according to <u>UWEX</u> <u>recommendations</u>. Phosphorus and potassium were applied as indicated by soil tests. Herbicides were applied for weed control as necessary. **Planting:** A grain drill with a 9 row cone seeder was used to plant the plots, all 25 feet in length. To account for field variability and for statistical analysis, each variety was grown in four separate plots (replicates) in a randomized complete block design at each location. #### Midseason **Disease assessments:** Foliar disease assessments were made at all trial locations during June at Feekes 10.0 (emerging heads). Assessments were made in the field by visual estimation of incidence (number of plants with symptoms) and average severity (magnitude of damage on plants with symptoms) across the plot using pre-made rating scale diagrams generated using the Severity Pro software (F. Nutter, lowa State University). Fusarium head blight assessments were made two weeks after the completion of anthesis at all trial locations. Entire plots were visually assessed for Fusarium head blight incidence and severity using pre-made rating scale diagrams. #### **Harvest** **Yield:** The center seven rows of each plot were harvested with a self-propelled combine. Grain was weighed and moisture and test weight were determined in the field using electronic equipment on the plot harvester. Yield is reported as bu/a (60 lb/bu) at 13.5% moisture content. **Lodging:** Lodging scores were based on the average erectness of the main stem of plants at maturity. 1 = all plants erect, 2 = slight lodging, $3 = \text{plants lodged at } 45^{\circ}$ angle, 4 = severe lodging, 5 = all plants flat. #### **Data Presentation** **Yield:** Listed in Tables 3-7. Data for both 2017 and 2018 are provided if the variety was entered in the 2017 trials. **Least significant difference:** Variations in yield and other characteristics occur because of variability in soil and other growing conditions that lower the precision of the results. Statistical analysis makes it possible to determine, with known probabilities of error, whether a difference is real or whether it may have occurred by chance. Growers can use the appropriate least significant difference (LSD) value at the bottom of the tables to determine true statistical differences. Where the difference between two selected varieties within a
column is equal to or greater than the LSD value at the bottom of the column, there is a real difference between the two varieties in nine out of ten instances. If the difference is less than the LSD value, there may still be a real difference, but the experiment has produced no evidence of it. Data that is not significant is indicated by NS. If an entrant is not listed for a brand, the entry was submitted either by the listed company or by the testing program. # **Testing Agencies** The Wisconsin Winter Wheat Performance Trials were conducted by the Departments of Agronomy and Plant Pathology, College of Agricultural and Life Sciences and the University of Wisconsin-Extension in cooperation and with support from the Wisconsin Crop Improvement Association. #### **Additional Information** Check the following publications for additional information on small grain production and seed availability. Both are updated annually. Pest Management in Wisconsin Field Crops (A3646) available at <u>learningstore.uwex.edu</u> The Wisconsin Certified Seed Directory available at wcia. wisc.edu For information on seed availability of public varieties, contact: Wisconsin Crop Improvement Association 554 Moore Hall 1575 Linden Drive Madison, WI 53706 (608) 262-1341, wcia.wisc.edu To access crop performance testing information electronically, visit: www.coolbean.info For more information on wheat production please also follow Dr. Conley on Titter @badgerbean Please click for <u>A Visual Guide to Winter Wheat Development and Growth Staging</u> **Authors:** Shawn Conley is a Professor in Agronomy; Adam Roth and John Gaska are program managers in Agronomy; Brian Mueller is a program manager in Plant Pathology and Damon Smith is an Associate Professor in Plant Pathology, College of Agricultural and Life Sciences, University of Wisconsin-Madison. # **Table 1.** 2018 Company Information | Brand | | | | |------------------------|---|----------------|------------------------------| | (Entrant) | Company Name | Phone | Website | | AgriMAXX | AgriMAXX Wheat Company | (855) 629-9432 | www.agrimaxxwheat.com | | Albert Lea Seed | Albert Lea Seed | (800) 352-5247 | www.alseed.com | | Beck | Beck's Hybrids | (800) 937-2325 | www.beckshybrids.com | | CROPLAN | Winfield United | (651) 375-6620 | www.winfieldunited.com | | Diener | BioTown Seeds Inc. | (219) 984-6038 | www.biotownseeds.com | | Dyna-Gro | Dyna-Gro Seed | (608) 752-2633 | www.dynagroseed.com | | FS Seed | Growmark, Inc. | (309) 242-3439 | www.fsseed.com/midwest | | Jung | Jung Seed Genetics | (800) 242-1855 | www.jungseedgenetics.com | | Kratz Farms | Kratz Farms, LLP | (414) 507-4631 | www.kratzfarms.com | | L-Brand (Ag Pro) | Ag Pro Enterprises, LLC | (920) 904-1758 | www.limagraincerealseeds.com | | L-Brand (Welter) | Welter Seed and Honey Company | (800) 470-3325 | www.welterseed.com | | Legacy | Legacy Seeds Inc. | (715) 467-2555 | www.legacyseeds.com | | Limagrain Cereal Seeds | Limagrain Cereal Seeds | (970) 498-2200 | www.limagraincerealseeds.com | | PiP | Partners in Production | (608) 335-2112 | www.pipseeds.com | | Pro Seed Genetics | Pro Seed Genetics Cooperative | (920) 388-2824 | | | Public | WI Foundation Seeds | (608) 846-9761 | | | Syngenta | Syngenta AgriPro | (309) 944-4661 | www.agriprowheat.com | | Van Treeck's | Van Treeck's Seed Farm | (920) 467-2422 | | | VCIA / VA Tech | Virginia Crop Improvement Association / VA Tech | (804) 746-4884 | www.virginiacrop.org | | | | | | **Table 2.** 2018 Entered Varieties and Seed Treatments | Brand (Entrant) | Variety | Seed Treatment(s) | Brand (Entrant) | Variety | Seed Treatment(s) | |-----------------|----------|------------------------------------|-----------------|---------|-------------------------------| | AgriMAXX | 413 | PRIME ST | Dyna-Gro | 9522 | Awaken ST, Foothold Virock | | | 438 | PRIME ST | | 9701 | Awaken ST, Foothold Virock | | | 463 | PRIME ST | | 9750 | Awaken ST, Foothold Virock | | | 473 | PRIME ST | | 9862 | CruiserMaxx, Vibrance | | | 475 | PRIME ST | | WX17775 | CruiserMaxx, Vibrance | | | 485 | PRIME ST | FS Seed | FS 603 | CruiserMaxx, Vibrance | | | 486 | PRIME ST | | FS 615 | CruiserMaxx, Vibrance | | | Exp 1884 | PRIME ST | | FS 619 | CruiserMaxx, Vibrance | | | Exp 1899 | PRIME ST | | FS 624 | CruiserMaxx, Vibrance | | Albert Lea Seed | LCS 3204 | None | | WX18A | CruiserMaxx, Vibrance | | Beck | 730 | Escalate | | WX18C | CruiserMaxx, Vibrance | | CROPLAN | CP8550 | Nitro Shield IV, Warden Cereals II | | WX18D | CruiserMaxx, Vibrance | | | CP9415 | Nitro Shield IV, Warden Cereals II | Jung | 5845 | CruiserMaxx, Vibrance Extreme | | | CP9606 | Nitro Shield IV, Warden Cereals II | | 5850 | CruiserMaxx, Vibrance Extreme | | Diener | D491W | Nitro Shield IV, Warden Cereals II | _ | 5855 | CruiserMaxx, Vibrance Extreme | | | D496W | CruiserMaxx, Vibrance | | 5888 | CruiserMaxx, Vibrance Extreme | | | D498W | CruiserMaxx, Vibrance | | 5930 | CruiserMaxx, Vibrance Extreme | | | D505W | Cruiser 5FS, Vibrance Extreme | | | | | Brand (Entrant) | Variety | Seed Treatment(s) | |---------------------------|----------|-----------------------------------| | Kratz Farms | KF 15144 | Cruiser 5FS, Vibrance Extreme | | | KF 15241 | Cruiser 5FS, Vibrance Extreme | | | KF 15334 | Cruiser 5FS, Vibrance Extreme | | | KF 15639 | CereUs IM, Centynal, Release LC | | | KF 222 | Evergol Energy, Gaucho | | | KF 468 | Evergol, Gaucho | | | KF 553 | Evergol, Gaucho | | | KF 727 | Evergol, Gaucho | | L-Brand (Ag Pro) | L-304 | Sativa IM RTU, SabrEx | | | L-408 | CruiserMaxx, Vibrance | | | L-416 | Cruiser 5FS, Vibrance Extreme | | | L-418 | CruiserMaxx, Warden Cereals HR | | | L-424 | Evergol Energy, Gaucho | | | L-488 | Cruiser 5FS, Dividend Extreme | | | L-Star | CruiserMaxx, Warden Cereals II | | L-Brand (Welter) | L-334 | CruiserMaxx, Warden Cereals II | | Legacy | LW 1155 | Sativa IM RTU, SabrEx | | | LW 1695 | Sativa IM RTU, SabrEx | | | LW 1745 | CruiserMaxx, Vibrance | | | LW 1776 | Sativa IM RTU, SabrEx | | | LWX 1785 | CruiserMaxx, Vibrance | | Limagrain Cereal
Seeds | L11719 | Cereus Trio, Cruiser 5FS, Release | | PiP | 706 | Charter, imidacloprid | | | 707 | Charter, imidacloprid | | | 714 | Charter, imidacloprid | | | 715 | Charter, imidacloprid | | | 716 | Charter, imidacloprid | | | 720 | Charter, imidacloprid | | | 721 | Charter, imidacloprid | | | 735 | Charter, imidacloprid | | | 736 | Charter, imidacloprid | | | 744 | Charter, imidacloprid | | | 745 | Charter, imidacloprid | | | 748 | Charter, imidacloprid | | | 749 | Charter, imidacloprid | | | 750 | Charter, imidacloprid | | | 751 | Charter, imidacloprid | | | 753 | Charter, imidacloprid | | | 754 | Charter, imidacloprid | | Brand (Entrant) | Variety | Seed Treatment(s) | |--------------------------|-----------------|--------------------------------------| | Pro Seed Genetics | PRO 260 | CeresUS | | | PRO 320A | Vibrance Extreme | | | PRO 380 | CeresUS | | | PRO 410 | CeresUS | | | PRO Ex 440A | Cruiser 5FS, Vibrance Extreme | | | PRO Ex 450 | CruiserMaxx, Warden Cereals II | | Public | Harpoon | Warden Cereals II | | | Kaskaskia | CeresUS | | | Kokosing | Cereus Trio, Release LC | | | Red Devil Brand | Warden Cereals II | | | Red Dragon | Warden Cereals II | | | Brand | | | | Starburst | CereUs IM, Centynal, Release LC | | | Sunburst | Cereus Trio, Cruiser 5FS, Release LC | | | Whale | CeresUS | | Syngenta | SY 100 | CruiserMaxx, Vibrance | | | SY 547 | CruiserMaxx, Vibrance | | Van Treeck's | Bonanza | Vibrance Extreme | | | Echo | CruiserMaxx, Warden Cereals II | | | XL 007 | Vibrance Extreme | | VCIA / VA Tech | VA12W-31 | Provoke ST, Raxil-MD Pro | | | | | | | | 1 | 018 | | | | | | | 4 | | | 2017 | |------------------|----------|--------------|----------------------|--------|----------|--------------|----------|--------|--------------|-----------------------|----------------------|------|-------------------------| | | | 1 | average ¹ | | rlington | | hilton | | nd du Lac | Sharo | | 3-te | st average ² | | Brand (Fortunat) | F., 4 | Yield | Test wt. | | Yield | | (Entrant) | Entry | (bu/a) | (lb/bu) | (bu/a) | (lb/bu) | (bu/a) | (lb/bu) | (bu/a) | (lb/bu) | (bu/a)
* 08 | (lb/bu) | | (bu/a) | | AgriMAXX | 413 | * 90 | 53.4 | 92 | 53.1 | 81 | 54.9 | * 64 | 51.7 | 90 | 52.3 | | 92 | | | 438 | 85 | 52.6 | 85 | 51.3 | * 86 | 55.3 | * 72 | 54.2 | 85 | 51.1 | * | 93 | | | 463 | 88 | 55.1 | * 93 | 55.7 | 73 | 54.7 | 62 | 52.5 | * 97 | 54.9 | | 92 | | | 473 | 88 | 55.8 | * 93 | 56.0 | 79 | 56.4 | * 65 | 53.8 | 91 | 55.0 | | | | | 475 | 88 | 56.4 | 92 | 56.5 | 78 | 56.8 | * 68 | 55.2 | 95 | 56.1 | | | | | 485 | * 92 | 55.1 | * 99 | 55.9 | 84 | 56.2 | * 69 | 55.6 | 94 | 53.2 | * | 93 | | | 486 | 88 | 55.5 | 89 | 55.8 | 80 | 55.5 | 63 | 53.0 | * 96 | 55.5 | * | 98 | | | Exp 1884 | * 92 | 54.6 | * 94 | 54.9 | 80 | 55.0 | * 69 | 53.6 | * 101 | 53.9 | | | | | Exp 1899 | * 89 | 54.3 | 90 | 53.3 | 82 | 56.2 | * 68 | 53.9 | 95 | 53.4 | | | | Albert Lea Seed | LCS 3204 | 84 | 58.6 | 90 | 59.1 | 70 | 58.3 | 61 | 56.3 | 91 | 58.3 | | | | Beck | 730 | 88 | 53.6 | 86 | 53.2 | 79 | 56.1 | 62 | 53.6 | * 98 | 51.5 | | | | CROPLAN | CP8550 | 88 | 55.8 | 91 | 56.0 | 78 | 56.5 | * 65 | 55.1 | 95 | 54.8 | | | | | CP9415 | 88 | 55.4 | 92 | 54.5 | 78 | 56.8 | * 69 | 54.8 | 94 | 55.0 | | | | | CP9606 | 86 | 53.0 | 85 | 51.9 | 84 | 55.2 | 62 | 53.1 | 88 | 52.0 | | | | Diener | D491W | * 94 | 55.3 | * 95 | 54.6 | * 89 | 56.1 | * 69 | 53.5 | * 99 | 55.4 | | 90 | | | D496W | 87 | 55.1 | 89 | 55.5 | 76 | 54.9 | 54 | 51.8 | * 96 | 54.8 | * | 96 | | | D498W | * 92 | 56.0 | * 95 | 56.8 | 81 | 56.5 | * 66 | 55.4 | * 101 | 54.7 | * | 96 | | | D505W | * 90 | 55.0 | 91 | 55.4 | 81 | 55.2 | * 67 | 54.1 | * 98 | 54.4 | | | | Dyna-Gro | 9522 | * 89 | 54.4 | * 93 | 53.7 | 83 | 55.9 | * 64 | 54.3 | 91 | 53.5 | * | 96 | | | 9701 | * 89 | 55.6 | * 94 | 56.0 | 76 |
56.3 | * 67 | 54.2 | * 96 | 54.6 | * | 94 | | | 9750 | 87 | 54.9 | * 93 | 55.5 | 73 | 54.6 | 61 | 52.8 | * 96 | 54.6 | * | 94 | | | 9862 | * 91 | 54.6 | * 95 | 54.5 | 81 | 55.7 | * 67 | 53.9 | * 98 | 53.6 | * | 93 | | | WX17775 | * 92 | 54.2 | * 95 | 54.7 | 80 | 55.2 | * 67 | 51.8 | * 100 | 52.8 | | | | FS Seed | FS 603 | 86 | 56.2 | 86 | 56.5 | 76 | 56.8 | * 66 | 55.8 | * 98 | 55.5 | * | 98 | | | FS 615 | 86 | 53.9 | 84 | 52.2 | 84 | 55.7 | * 64 | 54.4 | 91 | 53.9 | * | 95 | | | FS 619 | 87 | 55.6 | 87 | 55.7 | 82 | 56.4 | 63 | 53.2 | 92 | 54.8 | * | 93 | | | FS 624 | * 90 | 55.2 | 88 | 54.9 | 84 | 56.3 | 61 | 53.4 | * 98 | 54.5 | * | 97 | | | WX18A | * 91 | 54.5 | 92 | 54.5 | 79 | 55.3 | 63 | 51.9 | * 100 | 53.8 | | | | | WX18C | * 93 | 54.4 | * 95 | 54.0 | * 88 | 55.7 | * 69 | 54.0 | 94 | 53.5 | | | | | WX18D | 83 | 53.8 | 85 | 53.0 | 77 | 56.0 | 59 | 51.3 | 87 | 52.5 | | | | Jung | 5845 | 85 | 54.8 | 87 | 55.9 | 72 | 55.9 | 63 | 55.5 | * 96 | 52.7 | | 85 | | , | 5850 | 83 | 53.9 | 89 | 54.1 | 76 | 57.0 | 61 | 53.7 | 84 | 50.4 | | 88 | | | 5855 | 88 | 54.7 | * 94 | 54.8 | 78 | 56.1 | * 64 | 53.7 | 91 | 53.3 | | 90 | | | 5888 | 86 | 54.5 | * 94 | 55.0 | 74 | 56.0 | 61 | 52.4 | 90 | 52.6 | | 90 | | | 5930 | 85 | 55.2 | 89 | 56.1 | 73 | 56.6 | 60 | 54.4 | 92 | 53.0 | | 79 | | | | ei ami£eamth | | | | ha biabastui | | | J. I. a a a. | relizado di fino mo t | 55.0
h a marril±i | | | ^{*} Yield is not significantly different (0.10 level) than that of the highest yielding cultivar ¹ Fond du Lac was excluded from the multitest average due to large coefficients of variation caused by Cephalosporium stripe ² Chilton was abandoned due to severe winterkill | | | 1 | 018 | l _ | | | | | | l , | | | 2017 | |------------------|----------------|--------|----------------------|--------|----------|--------|----------|--------|----------|--------|----------|------|-------------| | | | l | average ¹ | l | lington | | hilton | | d du Lac | *Sharo | n | 3-te | st average² | | Brand | | Yield | Test wt. | | Yield | | (Entrant) | Entry | (bu/a) | (lb/bu) | | (bu/a) | | Kratz Farms | KF 15144 | 82 | 54.5 | 82 | 54.2 | 74 | 56.0 | 56 | 53.9 | 91 | 53.5 | | 82 | | | KF 15241 | * 90 | 56.5 | * 96 | 57.5 | 77 | 56.9 | * 70 | 55.8 | * 98 | 55.0 | | 83 | | | KF 15334 | 80 | 56.2 | 80 | 57.0 | 75 | 57.6 | 61 | 56.0 | 86 | 53.5 | | 92 | | | KF 15639 | 87 | 56.7 | 89 | 57.0 | 78 | 57.3 | 55 | 53.8 | 93 | 55.8 | | | | | KF 222 | 79 | 54.0 | 78 | 52.3 | 72 | 57.0 | 52 | 52.0 | 89 | 52.7 | | 83 | | | KF 468 | 86 | 57.1 | 87 | 57.6 | 77 | 58.1 | * 70 | 55.9 | 95 | 55.4 | | 81 | | | KF 553 | 78 | 55.9 | 71 | 55.3 | 76 | 58.0 | 57 | 55.4 | 87 | 54.3 | * | 95 | | | KF 727 | 77 | 54.4 | 76 | 53.3 | 73 | 56.6 | * 64 | 54.4 | 81 | 53.4 | * | 96 | | L-Brand (Ag Pro) | L-304 | 84 | 57.9 | 86 | 59.1 | 74 | 58.1 | 57 | 56.6 | 92 | 56.5 | | 88 | | | L-408 | 81 | 53.8 | 82 | 53.5 | 79 | 55.9 | 63 | 53.8 | 83 | 52.0 | | | | | L-416 | 85 | 55.5 | 89 | 55.8 | 76 | 57.1 | * 65 | 54.0 | 90 | 53.6 | * | 98 | | | L-418 | 84 | 56.7 | 88 | 57.8 | 71 | 57.1 | 59 | 56.6 | 93 | 55.1 | | | | | L-424 | 81 | 53.8 | 82 | 52.9 | 80 | 55.3 | 60 | 53.1 | 82 | 53.1 | * | 97 | | | L-488 | 81 | 54.7 | 81 | 54.5 | 76 | 56.9 | * 65 | 54.1 | 85 | 52.9 | | | | | L-Star | * 91 | 54.2 | * 93 | 54.1 | 84 | 56.6 | * 74 | 54.6 | * 98 | 52.1 | * | 100 | | L-Brand (Welter) | L-334 | 84 | 56.0 | 89 | 56.6 | 75 | 57.6 | 61 | 55.6 | 89 | 53.8 | * | 93 | | Legacy | LW 1155 | 84 | 53.7 | 89 | 53.4 | 70 | 55.8 | 58 | 52.4 | 93 | 51.9 | | 92 | | | LW 1695 | 83 | 55.1 | 79 | 55.2 | 76 | 56.2 | 51 | 52.9 | 95 | 53.9 | * | 93 | | | LW 1745 | 88 | 56.4 | 91 | 56.8 | 76 | 57.0 | 56 | 53.4 | * 97 | 55.6 | * | 98 | | | LW 1776 | 86 | 54.4 | 91 | 53.9 | 77 | 56.1 | 61 | 56.3 | 91 | 53.1 | | 91 | | Limagrain | LWX 1785 | 88 | 55.0 | * 93 | 55.6 | 71 | 54.7 | 61 | 52.4 | * 99 | 54.8 | | | | Cereal Seeds | L11719 | * 94 | 54.8 | * 96 | 54.9 | * 88 | 55.1 | 63 | 53.5 | * 97 | 54.4 | | | | PiP | 706 | * 89 | 54.4 | * 96 | 54.2 | 79 | 56.0 | * 72 | 55.5 | 93 | 53.0 | | | | | 707 | 86 | 53.9 | 85 | 53.2 | 82 | 56.9 | * 64 | 53.7 | 92 | 51.5 | | | | | 714 | * 92 | 55.3 | * 95 | 55.2 | 81 | 55.5 | * 71 | 54.3 | * 98 | 55.3 | * | 100 | | | 715 | * 90 | 55.9 | * 96 | 56.0 | 80 | 55.7 | 61 | 52.7 | 95 | 56.1 | | 90 | | | 716 | 88 | 54.6 | 91 | 54.6 | 74 | 54.9 | * 65 | 52.1 | * 100 | 54.2 | * | 95 | | | 720 | 86 | 55.4 | * 93 | 55.4 | 76 | 56.9 | * 67 | 53.8 | 88 | 53.9 | * | 94 | | | 721 | 88 | 53.6 | 89 | 53.6 | * 85 | 55.8 | * 68 | 53.9 | 90 | 51.3 | | 90 | | | 735 | * 94 | 54.6 | * 95 | 54.5 | * 88 | 55.4 | * 68 | 53.9 | * 100 | 54.0 | | 89 | | | 736 | * 90 | 54.0 | 91 | 53.2 | * 86 | 56.3 | * 72 | 53.7 | 94 | 52.6 | * | 97 | | | 744 | * 90 | 53.1 | * 93 | 52.8 | 77 | 55.0 | * 64 | 52.3 | * 99 | 51.5 | * | 94 | | | 745 | * 91 | 56.5 | * 93 | 56.6 | 81 | 57.1 | 60 | 53.7 | * 100 | 56.0 | * | 94 | | | 748 | 88 | 54.2 | 86 | 54.1 | * 85 | 55.4 | * 73 | 54.7 | 92 | 53.2 | | | | | 749 | 86 | 56.1 | * 93 | 56.5 | 73 | 56.8 | 62 | 54.5 | 91 | 54.9 | | | | | 750 | 86 | 56.7 | 86 | 57.2 | 74 | 56.9 | * 69 | 54.6 | * 99 | 56.1 | | | | | 751 | 85 | 56.6 | 87 | 56.3 | 75 | 57.4 | * 65 | 55.2 | 92 | 56.2 | | | | | 753 | 86 | 58.0 | 91 | 58.7 | 72 | 57.6 | 58 | 56.9 | 95 | 57.8 | | | | | 754 | * 93 | 55.2 | * 98 | 54.8 | 83 | 56.1 | * 68 | 54.0 | * 99 | 54.6 | | | | | * V: -1 -1 : + | | 11.55 | | | | | | | | | | | ^{*} Yield is not significantly different (0.10 level) than that of the highest yielding cultivar ¹ Fond du Lac was excluded from the multitest average due to large coefficients of variation caused by Cephalosporium stripe ² Chilton was abandoned due to severe winterkill | Pro Seed Genetics PRO PRO PRO 440 PRO PRO 440 PRO PRO Brack Red Brack Red | RO Ex 450 | Yield (bu/a) 87 80 86 88 | Test wt. (lb/bu) 54.2 56.9 57.3 55.1 | Yield (bu/a) * 93 88 92 86 | Test wt.
(lb/bu)
54.2
57.6
57.5 | Yield
(bu/a)
79
70 | Test wt.
(lb/bu)
56.7 | Yield
(bu/a)
57 | Test wt.
(lb/bu)
51.8 | Yield
(bu/a) | Test wt.
(lb/bu) | | Yield
(bu/a) | |---|--|------------------------------|--------------------------------------|--------------------------------|---|-----------------------------|-----------------------------|-----------------------|-----------------------------|-----------------|---------------------|---|-----------------| | Pro Seed PRC | RO 260
RO 320A
RO 380
RO 410
RO Ex
40A
RO Ex 450 | 87
80
86
88 | 54.2
56.9
57.3
55.1 | * 93
88
92 | 54.2
57.6 | 79 | | | | | | | (bu/a) | | Genetics PRC PRC PRC 440 PRC 440 PRC 440 PRC Ass Kok Red Bra Red | RO 320A
RO 380
RO 410
RO Ex
40A
RO Ex 450 | 80
86
88 | 56.9
57.3
55.1 | 88
92 | 57.6 | | 56.7 | 57 | 51.0 | 01 | | | (24,4) | | PRC PRC 440 PRC 440 PRC Public Har Kas Kok Red Bra Red | RO 380
RO 410
RO Ex
40A
RO Ex 450 | 86
88 | 57.3
55.1 | 92 | | 70 | | | 21.0 | ול | 51.5 | | 87 | | PRC 440 PRC 440 PRC Public Harr Kas Kok Red Bra Red | RO 410
RO Ex
40A
RO Ex 450 | 88 | 55.1 | | 57.5 | | 57.8 | 54 | 54.8 | 79 | 55.3 | | 92 | | PRC 440 PRC Public Har Kas Kok Red Bra Red | RO Ex
40A
RO Ex 450 | | | 86 | 0.10 | 73 | 58.4 | 59 | 57.0 | 92 | 56.1 | | 89 | | Public Harr Kas Kok Red Bra Red | 40A
RO Ex 450 | 88 | | 1 | 54.8 | 83 | 56.1 | 54 | 51.4 | 95 | 54.4 | * | 97 | | Public Har
Kas
Kok
Red
Bra
Red | | | 52.7 | * 93 | 51.3 | 77 | 55.2 | 59 | 51.8 | 94 | 51.5 | | | | Kas
Kok
Red
Bra
Red | | 88 | 57.0 | * 98 | 57.6 | 73 | 57.1 | * 72 | 56.4 | 94 | 56.5 | | | | Kok
Red
Bra
Red | arpoon | 88 | 54.6 | 90 | 55.1 | 75 | 54.4 | * 64 | 53.2 | * 99 | 54.3 | * | 95 | | Red
Bra
Red | askaskia | 81 | 56.0 | 76 | 55.3 | 78 | 57.9 | 57 | 56.6 | 88 | 54.9 | | 78 | | Bra
Red | okosing | 79 | 55.4 | 78 | 55.9 | 70 | 56.1 | 59 | 53.2 | 88 | 54.3 | | | | | ed Devil
rand | 82 | 56.4 | 83 | 56.9 | 73 | 57.4 | 56 | 56.0 | 90 | 54.8 | | 88 | | | ed
ragon
rand | 86 | 54.4 | 88 | 54.6 | 74 | 55.3 | 54 | 52.8 | * 96 | 53.4 | | 86 | | Sta | tarburst | 81 | 56.4 | 83 | 56.4 | 75 | 57.1 | 60 | 56.1 | 84 | 55.8 | | 91 | | Sur | unburst | 78 | 56.7 | 81 | 56.6 | 70 | 57.3 | 53 | 55.3 | 82 | 56.3 | | 87 | | Wh | /hale | 86 | 54.3 | 92 | 54.5 | 75 | 55.5 | * 70 | 54.1 | 89 | 52.7 | | 91 | | Syngenta SY 1 | Y 100 | 87 | 50.9 | 85 | 50.1 | * 86 | 53.0 | * 64 | 50.8 | 88 | 49.8 | * | 94 | | SY! | Y 547 | 87 | 56.2 | 92 | 56.4 | 74 | 56.7 | * 68 | 54.8 | * 96 | 55.5 | * | 94 | | Van Treeck's Bor | onanza | 85 | 55.3 | 88 | 55.6 | 74 | 56.9 | 63 | 54.6 | 94 | 53.6 | * | 94 | | Ech | cho | 88 | 55.7 | 92 | 56.3 | 77 | 56.4 | 59 | 53.8 | * 96 | 54.4 | | | | XL (| L 007 | 87 | 54.3 | 90 | 53.8 | 81 | 56.6 | 62 | 53.8 | 89 | 52.4 | * | 94 | | VCIA / VA Tech VA1 | A12W-31 | 83 | 56.3 | 87 | 56.7 | 72 | 57.2 | 53 | 55.3 | 91 | 54.9 | | 85 | | Me | lean | 87 | 55.1 | 89 | 55.1 | 78 | 56.3 | 63 | 54.0 | 93 | 54.0 | | 91 | | LSC | SD (.10) | 5 | 1.2 | 6 | 1.2 | 4 | 0.6 | 10 | 1.8 | 5 | 1.5 | | 7 | * Yield is not significantly different (0.10 level) than that of the highest yielding cultivar ¹ Fond du Lac was excluded from the multitest average due to large coefficients of variation caused by Cephalosporium stripe ² Chilton was abandoned due to severe winterkill | | | | | | 2018 means | | | | 2017 | means | |-----------------|----------|--------|----------|--------|------------|-----|-----|-------------------------|--------|----------| | | | Yield | Test wt. | Height | Lodging | FH | IB¹ | Winterkill ⁴ | Yield | Test wt. | | Brand (Entrant) | Entry | (bu/a) | (lb/bu) | (in.) | (1-5) | I%² | S%³ | (%) | (bu/a) | (lb/bu) | | AgriMAXX | 413 | 92 | 53.1 | 35 | 1.0 | 3 | 8 | 0 | 102 | 56.2 | | | 438 | 85 | 51.3 | 36 | 2.3 | 10 | 14 | 0 | 105 | 54.5 | | |
463 | * 93 | 55.7 | 32 | 1.0 | 1 | 6 | 0 | 107 | 57.0 | | | 473 | * 93 | 56.0 | 37 | 1.8 | 25 | 6 | 4 | | | | | 475 | 92 | 56.5 | 34 | 1.0 | 4 | 3 | 0 | | | | | 485 | * 99 | 55.9 | 34 | 2.0 | 8 | 3 | 0 | 106 | 57.4 | | | 486 | 89 | 55.8 | 36 | 1.8 | 11 | 6 | 0 | * 113 | 57.7 | | | Exp 1884 | * 94 | 54.9 | 34 | 1.5 | 1 | 4 | 0 | | | | | Exp 1899 | 90 | 53.3 | 33 | 1.5 | 7 | 11 | 0 | | | | Albert Lea Seed | LCS 3204 | 90 | 59.1 | 38 | 1.0 | 1 | 6 | 0 | | | | Beck | 730 | 86 | 53.2 | 34 | 1.5 | 9 | 7 | 3 | | | | CROPLAN | CP8550 | 91 | 56.0 | 37 | 1.3 | 24 | 5 | 3 | | | | | CP9415 | 92 | 54.5 | 33 | 1.3 | 8 | 5 | 0 | | | | | CP9606 | 85 | 51.9 | 34 | 1.0 | 10 | 15 | 4 | | | | Diener | D491W | * 95 | 54.6 | 34 | 1.0 | 1 | 8 | 0 | 104 | 55.4 | | | D496W | 89 | 55.5 | 32 | 1.0 | 2 | 4 | 3 | * 112 | 56.4 | | | D498W | * 95 | 56.8 | 34 | 1.0 | 3 | 5 | 0 | * 108 | 58.2 | | | D505W | 91 | 55.4 | 36 | 2.0 | 17 | 5 | 3 | | | | Dyna-Gro | 9522 | * 93 | 53.7 | 35 | 1.0 | 9 | 6 | 0 | * 109 | 57.1 | | | 9701 | * 94 | 56.0 | 37 | 1.3 | 13 | 5 | 0 | * 110 | 56.8 | | | 9750 | * 93 | 55.5 | 32 | 1.0 | 6 | 4 | 0 | * 109 | 56.6 | | | 9862 | * 95 | 54.5 | 33 | 2.3 | 2 | 4 | 0 | 105 | 56.1 | | | WX17775 | * 95 | 54.7 | 34 | 2.3 | 1 | 5 | 0 | | | | FS Seed | FS 603 | 86 | 56.5 | 33 | 1.0 | 3 | 4 | 0 | * 108 | 57.1 | | | FS 615 | 84 | 52.2 | 35 | 1.0 | 2 | 9 | 0 | 106 | 56.7 | | | FS 619 | 87 | 55.7 | 37 | 1.0 | 1 | 14 | 0 | 105 | 57.4 | | | FS 624 | 88 | 54.9 | 35 | 1.0 | 13 | 18 | 0 | * 109 | 57.9 | | | WX18A | 92 | 54.5 | 34 | 2.3 | 2 | 8 | 0 | | | | | WX18C | * 95 | 54.0 | 35 | 1.0 | 6 | 9 | 0 | | | | | WX18D | 85 | 53.0 | 35 | 1.0 | 12 | 13 | 0 | | | | Jung | 5845 | 87 | 55.9 | 35 | 1.0 | 6 | 10 | 0 | 99 | 56.7 | | | 5850 | 89 | 54.1 | 36 | 1.0 | 28 | 9 | 0 | 103 | 54.8 | | | 5855 | * 94 | 54.8 | 35 | 1.0 | 13 | 10 | 0 | 104 | 57.0 | | | 5888 | * 94 | 55.0 | 35 | 1.0 | 11 | 11 | 8 | 107 | 57.4 | | | 5930 | 89 | 56.1 | 35 | 1.0 | 6 | 11 | 3 | 92 | 56.7 | ^{*} Yield is not significantly different (0.10 level) than that of the highest yielding cultivar ¹ Fusarium head blight ²% incidence ³% severity $^{^4}$ Winterkill = visual estimate taken at green-up of the % total plot stand loss due to winter injury | | | | | | 2018 means | | | | 201 | 7 means | |------------------------|----------|-------|----------|--------|------------|-------------------------|-----|-------------------------|--------|---------| | | | Yield | Test wt. | Height | Lodging | FH | IB¹ | Winterkill ⁴ | Yield | Test wt | | Brand (Entrant) | Entry | (bu/a | (lb/bu) | (in.) | (1-5) | 1 % ² | S%³ | (%) | (bu/a) | (lb/bu) | | Kratz Farms | KF 15144 | 82 | 54.2 | 35 | 1.0 | 33 | 8 | 0 | 95 | 57.4 | | | KF 15241 | * 96 | 57.5 | 36 | 1.3 | 2 | 3 | 3 | 90 | 55.0 | | | KF 15334 | 80 | 57.0 | 36 | 1.0 | 9 | 11 | 30 | * 108 | 59.2 | | | KF 15639 | 89 | 57.0 | 39 | 1.0 | 13 | 11 | 0 | | | | | KF 222 | 78 | 52.3 | 35 | 1.0 | 9 | 6 | 8 | 94 | 56.5 | | | KF 468 | 87 | 57.6 | 36 | 1.0 | 3 | 6 | 30 | 91 | 55.7 | | | KF 553 | 71 | 55.3 | 35 | 1.0 | 8 | 7 | 53 | * 110 | 59.3 | | | KF 727 | 76 | 53.3 | 32 | 1.0 | 16 | 20 | 35 | * 111 | 56.3 | | L-Brand (Ag Pro) | L-304 | 86 | 59.1 | 37 | 1.0 | 2 | 4 | 5 | 104 | 59.9 | | | L-408 | 82 | 53.5 | 35 | 1.0 | 13 | 8 | 8 | | | | | L-416 | 89 | 55.8 | 38 | 1.0 | 5 | 18 | 0 | * 110 | 56.9 | | | L-418 | 88 | 57.8 | 34 | 1.3 | 5 | 8 | 3 | | | | | L-424 | 82 | 52.9 | 34 | 1.3 | 6 | 5 | 0 | * 110 | 56.5 | | | L-488 | 81 | 54.5 | 34 | 1.3 | 6 | 8 | 0 | | | | | L-Star | * 93 | 54.1 | 35 | 1.3 | 14 | 40 | 0 | * 111 | 56.5 | | | L-334 | 89 | 56.6 | 35 | 1.8 | 4 | 5 | 0 | * 108 | 59.0 | | _egacy | LW 1155 | 89 | 53.4 | 33 | 1.0 | 2 | 3 | 0 | 104 | 55.9 | | | LW 1695 | 79 | 55.2 | 35 | 1.0 | 1 | 1 | 13 | 104 | 57.0 | | | LW 1745 | 91 | 56.8 | 35 | 1.0 | 5 | 4 | 3 | * 110 | 57.4 | | | LW 1776 | 91 | 53.9 | 33 | 2.3 | 6 | 9 | 0 | * 109 | 57.5 | | | LWX 1785 | * 93 | 55.6 | 34 | 1.0 | 1 | 4 | 0 | | | | Limagrain Cereal Seeds | L11719 | * 96 | 54.9 | 33 | 1.5 | 10 | 9 | 0 | | | | PiP | 706 | * 96 | 54.2 | 33 | 2.8 | 2 | 6 | 0 | | | | | 707 | 85 | 53.2 | 35 | 1.5 | 4 | 8 | 0 | | | | | 714 | * 95 | 55.2 | 36 | 1.8 | 11 | 8 | 0 | * 111 | 57.4 | | | 715 | * 96 | 56.0 | 38 | 1.3 | 29 | 8 | 0 | * 109 | 56.9 | | | 716 | 91 | 54.6 | 34 | 1.8 | 6 | 5 | 0 | 106 | 54.9 | | | 720 | * 93 | 55.4 | 35 | 1.0 | 7 | 21 | 0 | 106 | 56.0 | | | 721 | 89 | 53.6 | 37 | 1.5 | 18 | 16 | 0 | 101 | 54.8 | | | 735 | * 95 | 54.5 | 33 | 1.0 | 4 | 13 | 0 | 104 | 56.0 | | | 736 | 91 | 53.2 | 35 | 1.0 | 6 | 9 | 0 | * 110 | 56.6 | | | 744 | * 93 | 52.8 | 35 | 2.0 | 14 | 8 | 0 | 101 | 55.9 | | | 745 | * 93 | 56.6 | 34 | 1.0 | 7 | 6 | 0 | 105 | 57.7 | | | 748 | 86 | 54.1 | 34 | 1.3 | 19 | 4 | 5 | | | | | 749 | * 93 | 56.5 | 35 | 1.0 | 7 | 5 | 5 | | | | | 750 | 86 | 57.2 | 36 | 1.0 | 2 | 7 | 0 | | | | | 751 | 87 | 56.3 | 35 | 1.0 | 3 | 8 | 3 | | | | | 753 | 91 | 58.7 | 34 | 1.0 | 7 | 11 | 0 | | | | | 754 | * 98 | 54.8 | 33 | 1.5 | 13 | 14 | 0 | | | ^{*} Yield is not significantly different (0.10 level) than that of the highest yielding cultivar ¹ Fusarium head blight ² % incidence ³ % severity $^{^4}$ Winterkill = visual estimate taken at green-up of the % total plot stand loss due to winter injury | | | | | - 2 | 2018 means | | | | 2017 | means | |-------------------|------------------|--------|----------|--------|------------|-------------|----------------|-------------------------|--------|----------| | | | Yield | Test wt. | Height | Lodging | FH | B ¹ | Winterkill ⁴ | Yield | Test wt. | | Brand (Entrant) | Entry | (bu/a) | (lb/bu) | (in.) | (1-5) | 1 %² | S%³ | (%) | (bu/a) | (lb/bu) | | Pro Seed Genetics | PRO 260 | * 93 | 54.2 | 34 | 1.3 | 18 | 18 | 0 | 97 | 54.6 | | | PRO 320A | 88 | 57.6 | 41 | 1.0 | 7 | 11 | 28 | 106 | 57.8 | | | PRO 380 | 92 | 57.5 | 35 | 2.3 | 6 | 11 | 0 | 102 | 59.4 | | | PRO 410 | 86 | 54.8 | 36 | 1.5 | 16 | 21 | 5 | * 108 | 57.7 | | | PRO Ex 440A | * 93 | 51.3 | 34 | 2.3 | 10 | 5 | 0 | | | | | PRO Ex 450 | * 98 | 57.6 | 33 | 1.0 | 6 | 9 | 0 | | | | Public | Harpoon | 90 | 55.1 | 32 | 1.0 | 1 | 3 | 0 | * 108 | 56.0 | | | Kaskaskia | 76 | 55.3 | 40 | 3.0 | 18 | 13 | 0 | 90 | 58.4 | | | Kokosing | 78 | 55.9 | 35 | 1.0 | 12 | 8 | 7 | | | | | Red Devil Brand | 83 | 56.9 | 39 | 1.0 | 8 | 18 | 0 | 100 | 56.9 | | | Red Dragon Brand | 88 | 54.6 | 39 | 1.0 | 9 | 23 | 0 | 100 | 56.3 | | | Starburst | 83 | 56.4 | 29 | 1.0 | 13 | 8 | 0 | 103 | 60.3 | | | Sunburst | 81 | 56.6 | 29 | 1.0 | 11 | 9 | 0 | 101 | 59.1 | | | Whale | 92 | 54.5 | 36 | 1.0 | 13 | 15 | 0 | * 108 | 57.9 | | Syngenta | SY 100 | 85 | 50.1 | 33 | 1.3 | 23 | 8 | 0 | * 109 | 54.4 | | | SY 547 | 92 | 56.4 | 36 | 1.0 | 15 | 6 | 0 | 105 | 56.8 | | Van Treeck's | Bonanza | 88 | 55.6 | 38 | 1.0 | 11 | 26 | 0 | 104 | 56.4 | | | Echo | 92 | 56.3 | 33 | 1.0 | 14 | 11 | 3 | | | | | XL 007 | 90 | 53.8 | 36 | 1.0 | 3 | 8 | 0 | 106 | 56.6 | | VCIA / VA Tech | VA12W-31 | 87 | 56.7 | 32 | 1.0 | 9 | 8 | 3 | 95 | 57.1 | | | Mean | 89 | 55.1 | 35 | 1.3 | 9 | 9 | 3 | 104 | 56.9 | | | LSD (.10) | 6 | 1.2 | 1 | 0.7 | 9 | 7 | 6 | 5 | 1.0 | ⁴Winterkill = visual estimate taken at green-up of the % total plot stand loss due to winter injury ¹ Fusarium head blight ²% incidence ³% severity | | | | | 2018 n | neans | | |-----------------|---|---|--------|----------|-----------|----------------| | | | | Yield | Test wt. | Height | Lodging | | Brand (Entrant) | Entry | | (bu/a) | (lb/bu) | (in.) | (1-5) | | AgriMAXX | 413 | | 81 | 54.9 | 30 | 1.0 | | | 438 | * | 86 | 55.3 | 32 | 1.0 | | | 463 | | 73 | 54.7 | 29 | 1.0 | | | 473 | | 79 | 56.4 | 32 | 1.0 | | | 475 | | 78 | 56.8 | 29 | 1.0 | | | 485 | | 84 | 56.2 | 30 | 1.0 | | | 486 | | 80 | 55.5 | 32 | 1.0 | | | Exp 1884 | | 80 | 55.0 | 30 | 1.0 | | | Exp 1899 | | 82 | 56.2 | 29 | 1.0 | | Albert Lea Seed | LCS 3204 | | 70 | 58.3 | 32 | 1.0 | | Beck | 730 | | 79 | 56.1 | 29 | 1.0 | | CROPLAN | CP8550 | | 78 | 56.5 | 32 | 1.0 | | | CP9415 | | 78 | 56.8 | 29 | 1.0 | | | CP9606 | | 84 | 55.2 | 30 | 1.0 | | Diener | D491W | * | 89 | 56.1 | 29 | 1.0 | | | D496W | | 76 | 54.9 | 29 | 1.0 | | | D498W | | 81 | 56.5 | 28 | 1.0 | | | D505W | | 81 | 55.2 | 32 | 1.0 | | Dyna-Gro | 9522 | | 83 | 55.9 | 31 | 1.0 | | | 9701 | | 76 | 56.3 | 32 | 1.0 | | | 9750 | | 73 | 54.6 | 28 | 1.0 | | | 9862 | | 81 | 55.7 | 29 | 1.0 | | | WX17775 | | 80 | 55.2 | 30 | 1.0 | | FS Seed | FS 603 | | 76 | 56.8 | 28 | 1.0 | | | FS 615 | | 84 | 55.7 | 31 | 1.0 | | | FS 619 | | 82 | 56.4 | 32 | 1.0 | | | FS 624 | | 84 | 56.3 | 31 | 1.0 | | | WX18A | | 79 | 55.3 | 29 | 1.0 | | | WX18C | * | 88 | 55.7 | 30 | 1.0 | | | WX18D | | 77 | 56.0 | 31 | 1.0 | | Jung | 5845 | | 72 | 55.9 | 31 | 1.0 | | | 5850 | | 76 | 57.0 | 32 | 1.0 | | | 5855 | | 78 | 56.1 | 31 | 1.0 | | | 5888 | | 74 | 56.0 | 31 | 1.0 | | | 5930 | | 73 | 56.6 | 30 | 1.0 | | | * Yield is not significant
than that of the highes | | | | continued | d on next page | Chilton was abandoned due to severe winterkill in 2017 # Table 5. 2018 Chilton Winter Wheat Performance Trial Results continued from previous page | | | 2018 means | | | | | | | | |---------------------------|----------|------------|--------|----------|--------|---------|--|--|--| | | | | Yield | Test wt. | Height | Lodging | | | | | Brand (Entrant) | Entry | | (bu/a) | (lb/bu) | (in.) | (1-5) | | | | | Kratz Farms | KF 15144 | | 74 | 56.0 | 32 | 1.0 | | | | | | KF 15241 | | 77 | 56.9 | 32 | 1.0 | | | | | | KF 15334 | | 75 | 57.6 | 32 | 1.0 | | | | | | KF 15639 | | 78 | 57.3 | 31 | 1.0 | | | | | | KF 222 | | 72 | 57.0 | 31 | 1.0 | | | | | | KF 468 | | 77 | 58.1 | 32 | 1.0 | | | | | | KF 553 | | 76 | 58.0 | 31 | 1.0 | | | | | | KF 727 | | 73 | 56.6 | 29 | 1.0 | | | | | L-Brand (Ag Pro) | L-304 | | 74 | 58.1 | 32 | 1.0 | | | | | | L-408 | | 79 | 55.9 | 31 | 1.0 | | | | | | L-416 | | 76 | 57.1 | 33 | 1.0 | | | | | | L-418 | | 71 | 57.1 | 29 | 1.0 | | | | | | L-424 | | 80 | 55.3 | 30 | 1.0 | | | | | | L-488 | | 76 | 56.9 | 29 | 1.0 | |
| | | | L-Star | | 84 | 56.6 | 30 | 1.0 | | | | | L-Brand (Welter) | L-334 | | 75 | 57.6 | 32 | 1.0 | | | | | Legacy | LW 1155 | | 70 | 55.8 | 29 | 1.0 | | | | | | LW 1695 | | 76 | 56.2 | 30 | 1.0 | | | | | | LW 1745 | | 76 | 57.0 | 28 | 1.0 | | | | | | LW 1776 | | 77 | 56.1 | 29 | 1.0 | | | | | | LWX 1785 | | 71 | 54.7 | 29 | 1.0 | | | | | Limagrain Cereal
Seeds | L11719 | * | 88 | 55.1 | 28 | 1.0 | | | | | PiP | 706 | | 79 | 56.0 | 29 | 1.0 | | | | | | 707 | | 82 | 56.9 | 30 | 1.0 | | | | | | 714 | | 81 | 55.5 | 32 | 1.0 | | | | | | 715 | | 80 | 55.7 | 33 | 1.0 | | | | | | 716 | | 74 | 54.9 | 29 | 1.0 | | | | | | 720 | | 76 | 56.9 | 29 | 1.0 | | | | | | 721 | * | 85 | 55.8 | 32 | 1.0 | | | | | | 735 | * | 88 | 55.4 | 30 | 1.0 | | | | | | 736 | * | 86 | 56.3 | 31 | 1.0 | | | | | | 744 | | 77 | 55.0 | 29 | 1.0 | | | | | | 745 | | 81 | 57.1 | 30 | 1.0 | | | | | | 748 | * | 85 | 55.4 | 31 | 1.0 | | | | | | 749 | | 73 | 56.8 | 29 | 1.0 | | | | | | 750 | | 74 | 56.9 | 31 | 1.0 | | | | | | 751 | | 75 | 57.4 | 31 | 1.0 | | | | | | 753 | | 72 | 57.6 | 28 | 1.0 | | | | | | 754 | | 83 | 56.1 | 28 | 1.0 | | | | Chilton was abandoned due to severe winterkill in 2017 ^{*} Yield is not significantly different (0.10 level) than that of the highest yielding cultivar | | | | 2018 | means | | | | | | | |-------------------|---|------|------------|--------|---------|--|--|--|--|--| | | | Yiel | d Test wt. | Height | Lodging | | | | | | | Brand (Entrant) | Entry | (bu/ | a) (lb/bu) | (in.) | (1-5) | | | | | | | Pro Seed Genetics | PRO 260 | 79 | 56.7 | 30 | 1.0 | | | | | | | | PRO 320A | 70 | 57.8 | 33 | 1.0 | | | | | | | | PRO 380 | 73 | 58.4 | 31 | 1.0 | | | | | | | | PRO 410 | 83 | 56.1 | 31 | 1.0 | | | | | | | | PRO Ex 440A | 77 | 55.2 | 29 | 1.0 | | | | | | | | PRO Ex 450 | 73 | 57.1 | 28 | 1.0 | | | | | | | Public | Harpoon | 75 | 54.4 | 29 | 1.0 | | | | | | | | Kaskaskia | 78 | 57.9 | 36 | 1.0 | | | | | | | | Kokosing | 70 | 56.1 | 31 | 1.0 | | | | | | | | Red Devil Brand | 73 | 57.4 | 33 | 1.0 | | | | | | | | Red Dragon Brand | 74 | 55.3 | 34 | 1.0 | | | | | | | | Starburst | 75 | 57.1 | 25 | 1.0 | | | | | | | | Sunburst | 70 | 57.3 | 27 | 1.0 | | | | | | | | Whale | 75 | 55.5 | 31 | 1.0 | | | | | | | Syngenta | SY 100 | * 86 | 53.0 | 29 | 1.0 | | | | | | | | SY 547 | 74 | 56.7 | 30 | 1.0 | | | | | | | Van Treeck's | Bonanza | 74 | 56.9 | 33 | 1.0 | | | | | | | | Echo | 77 | 56.4 | 28 | 1.0 | | | | | | | | XL 007 | 81 | 56.6 | 30 | 1.0 | | | | | | | VCIA / VA Tech | VA12W-31 | 72 | 57.2 | 27 | 1.0 | | | | | | | | Mean | 78 | 56.3 | 30 | 1.0 | | | | | | | | LSD (.10) | 4 | 0.6 | 1 | NS | | | | | | | | * Yield is not significantly different (0.10 level) | | | | | | | | | | Chilton was abandoned due to severe winterkill in 2017 | | | | | 20 | | 2017 means | | | | |-----------------|---|---|--------|----------|--------|------------|-----------------|--------|-----------------| | | | | Yield | Test wt. | Height | Lodging | CS ¹ | Yield | Test wt. | | Brand (Entrant) | Entry | | (bu/a) | (lb/bu) | (in.) | (1-5) | % | (bu/a) | (lb/bu) | | AgriMAXX | 413 | * | 64 | 51.7 | 32 | 1.0 | 10 | 69 | 54.5 | | | 438 | * | 72 | 54.2 | 35 | 1.0 | 1 | 65 | 55.5 | | | 463 | | 62 | 52.5 | 31 | 1.0 | 3 | 59 | 54.1 | | | 473 | * | 65 | 53.8 | 35 | 1.0 | 4 | | | | | 475 | * | 68 | 55.2 | 32 | 1.0 | 4 | | | | | 485 | * | 69 | 55.6 | 31 | 1.0 | 1 | 63 | 55.6 | | | 486 | | 63 | 53.0 | 34 | 1.0 | 10 | 68 | 54.6 | | | Exp 1884 | * | 69 | 53.6 | 35 | 1.0 | 1 | | | | | Exp 1899 | * | 68 | 53.9 | 32 | 1.0 | 11 | | | | Albert Lea Seed | LCS 3204 | | 61 | 56.3 | 36 | 1.0 | 4 | | | | Beck | 730 | | 62 | 53.6 | 31 | 1.0 | 9 | | | | CROPLAN | CP8550 | * | 65 | 55.1 | 35 | 1.0 | 10 | | | | | CP9415 | * | 69 | 54.8 | 32 | 1.0 | 19 | | | | | CP9606 | | 62 | 53.1 | 32 | 1.0 | 6 | | | | Diener | D491W | * | 69 | 53.5 | 32 | 1.0 | 9 | 70 | 55.2 | | | D496W | | 54 | 51.8 | 31 | 1.0 | 19 | * 71 | 53.9 | | | D498W | * | 66 | 55.4 | 32 | 1.0 | 9 | 65 | 56.1 | | | D505W | * | 67 | 54.1 | 34 | 1.0 | 5 | | | | Dyna-Gro | 9522 | * | 64 | 54.3 | 33 | 1.0 | 5 | 69 | 55.5 | | , | 9701 | * | 67 | 54.2 | 36 | 1.0 | 6 | 63 | 54.9 | | | 9750 | | 61 | 52.8 | 30 | 1.0 | 9 | 67 | 54.7 | | | 9862 | * | 67 | 53.9 | 32 | 1.0 | 15 | 66 | 55.8 | | | WX17775 | * | 67 | 51.8 | 33 | 1.0 | 14 | | | | FS Seed | FS 603 | * | 66 | 55.8 | 32 | 1.0 | 0 | 68 | 57.0 | | | FS 615 | * | 64 | 54.4 | 32 | 1.0 | 4 | 67 | 56.0 | | | FS 619 | | 63 | 53.2 | 35 | 1.0 | 16 | 63 | 55.1 | | | FS 624 | | 61 | 53.4 | 34 | 1.0 | 3 | 68 | 56.4 | | | WX18A | | 63 | 51.9 | 33 | 1.0 | 5 | | | | | WX18C | * | 69 | 54.0 | 32 | 1.0 | 4 | | | | | WX18D | | 59 | 51.3 | 32 | 1.0 | 23 | | | | Jung | 5845 | | 63 | 55.5 | 33 | 1.0 | 5 | 62 | 56.1 | | | 5850 | | 61 | 53.7 | 34 | 1.0 | 3 | 64 | 55.4 | | | 5855 | * | 64 | 53.7 | 33 | 1.0 | 8 | 63 | 54.8 | | | 5888 | | 61 | 52.4 | 34 | 1.0 | 6 | 64 | 54.7 | | | 5930 | | 60 | 54.4 | 35 | 1.0 | 16 | 63 | 56.4 | | | * Yield is not significantly 1CS = Cephalosoprium st | | | | | | cultivar | cont | inued on next p | | | | | | 2 | | 2017 means | | | | | |------------------------|----------|---|--------|----------|--------|------------|-----------------|---|-------|----------| | | | | Yield | Test wt. | Height | Lodging | CS ¹ | ١ | /ield | Test wt. | | Brand (Entrant) | Entry | | (bu/a) | (lb/bu) | (in.) | (1-5) | % | (| bu/a) | (lb/bu) | | Kratz Farms | KF 15144 | | 56 | 53.9 | 34 | 1.0 | 11 | | 63 | 56.0 | | | KF 15241 | * | 70 | 55.8 | 35 | 1.0 | 4 | | 68 | 56.8 | | | KF 15334 | | 61 | 56.0 | 35 | 1.0 | 11 | | 65 | 57.0 | | | KF 15639 | | 55 | 53.8 | 35 | 1.0 | 19 | | | | | | KF 222 | | 52 | 52.0 | 34 | 1.0 | 31 | | 65 | 56.2 | | | KF 468 | * | 70 | 55.9 | 35 | 1.0 | 3 | | 67 | 57.4 | | | KF 553 | | 57 | 55.4 | 34 | 1.0 | 20 | | 69 | 57.4 | | | KF 727 | * | 64 | 54.4 | 34 | 1.0 | 13 | | 69 | 55.6 | | L-Brand (Ag Pro) | L-304 | | 57 | 56.6 | 35 | 1.0 | 9 | | 64 | 57.9 | | | L-408 | | 63 | 53.8 | 33 | 1.0 | 5 | | | | | | L-416 | * | 65 | 54.0 | 38 | 1.0 | 14 | | 70 | 56.0 | | | L-418 | | 59 | 56.6 | 33 | 1.0 | 9 | | | | | | L-424 | | 60 | 53.1 | 32 | 1.0 | 11 | | 70 | 55.4 | | | L-488 | * | 65 | 54.1 | 34 | 1.0 | 5 | | | | | | L-Star | * | 74 | 54.6 | 35 | 1.0 | 4 | * | 72 | 56.0 | | L-Brand (Welter) | L-334 | | 61 | 55.6 | 33 | 1.0 | 16 | | 66 | 57.2 | | Legacy | LW 1155 | | 58 | 52.4 | 32 | 1.0 | 13 | | 65 | 53.8 | | | LW 1695 | | 51 | 52.9 | 34 | 1.0 | 39 | | 67 | 55.5 | | | LW 1745 | | 56 | 53.4 | 33 | 1.0 | 16 | * | 72 | 56.8 | | | LW 1776 | | 61 | 56.3 | 32 | 1.0 | 14 | | 57 | 56.2 | | | LWX 1785 | | 61 | 52.4 | 32 | 1.0 | 5 | | | | | Limagrain Cereal Seeds | L11719 | | 63 | 53.5 | 30 | 1.0 | 15 | | | | | PiP | 706 | * | 72 | 55.5 | 33 | 1.0 | 1 | | | | | | 707 | * | 64 | 53.7 | 32 | 1.0 | 6 | | | | | | 714 | * | 71 | 54.3 | 35 | 1.0 | 1 | * | 78 | 55.7 | | | 715 | | 61 | 52.7 | 36 | 1.0 | 25 | | 60 | 55.0 | | | 716 | * | 65 | 52.1 | 35 | 1.0 | 11 | | 65 | 54.1 | | | 720 | * | 67 | 53.8 | 33 | 1.0 | 15 | * | 71 | 56.3 | | | 721 | * | 68 | 53.9 | 36 | 1.0 | 5 | | 63 | 55.0 | | | 735 | * | 68 | 53.9 | 32 | 1.0 | 16 | | 70 | 55.3 | | | 736 | * | 72 | 53.7 | 34 | 1.0 | 9 | | 66 | 55.5 | | | 744 | * | 64 | 52.3 | 32 | 1.0 | 10 | * | 75 | 56.0 | | | 745 | | 60 | 53.7 | 33 | 1.0 | 28 | | 63 | 56.7 | | | 748 | * | 73 | 54.7 | 32 | 1.0 | 9 | | | | | | 749 | | 62 | 54.5 | 33 | 1.0 | 8 | | | | | | 750 | * | 69 | 54.6 | 35 | 1.0 | 5 | | | | | | 751 | * | 65 | 55.2 | 32 | 1.0 | 5 | | | | | | 753 | | 58 | 56.9 | 32 | 1.0 | 15 | | | | | | 754 | * | 68 | 54.0 | 31 | 1.0 | 13 | | | | ^{*} Yield is not significantly different (0.10 level) than that of the highest yielding cultivar ¹CS = Cephalosoprium stripe expressed as % of diseased and stunted plants | | | | 20 |)18 mean: | S | | 2017 means | | | |-------------------|------------------|--------|----------|-----------|---------|------------------------|------------|----------|--| | | | Yield | Test wt. | Height | Lodging | CS ¹ | Yield | Test wt. | | | Brand (Entrant) | Entry | (bu/a) | (lb/bu) | (in.) | (1-5) | % | (bu/a) | (lb/bu) | | | Pro Seed Genetics | PRO 260 | 57 | 51.8 | 32 | 1.0 | 29 | 62 | 55.5 | | | | PRO 320A | 54 | 54.8 | 38 | 1.0 | 20 | 68 | 56.7 | | | | PRO 380 | 59 | 57.0 | 33 | 1.0 | 3 | 61 | 59.4 | | | | PRO 410 | 54 | 51.4 | 33 | 1.0 | 31 | 70 | 56.8 | | | | PRO Ex 440A | 59 | 51.8 | 32 | 1.0 | 9 | | | | | | PRO Ex 450 | * 72 | 56.4 | 33 | 1.0 | 0 | | | | | Public | Harpoon | * 64 | 53.2 | 32 | 1.0 | 5 | 68 | 53.9 | | | | Kaskaskia | 57 | 56.6 | 37 | 1.0 | 10 | 60 | 58.0 | | | | Kokosing | 59 | 53.2 | 35 | 1.0 | 6 | | | | | | Red Devil Brand | 56 | 56.0 | 36 | 1.0 | 8 | 64 | 57.3 | | | | Red Dragon Brand | 54 | 52.8 | 37 | 1.0 | 8 | 62 | 55.1 | | | | Starburst | 60 | 56.1 | 29 | 1.0 | 16 | 68 | 57.7 | | | | Sunburst | 53 | 55.3 | 28 | 1.0 | 26 | 70 | 58.6 | | | | Whale | * 70 | 54.1 | 34 | 1.0 | 0 | 69 | 55.2 | | | Syngenta | SY 100 | * 64 | 50.8 | 31 | 1.0 | 18 | 66 | 54.0 | | | | SY 547 | * 68 | 54.8 | 34 | 1.0 | 6 | * 71 | 55.5 | | | Van Treeck's | Bonanza | 63 | 54.6 | 36 | 1.0 | 4 | * 72 | 56.5 | | | | Echo | 59 | 53.8 | 32 | 1.0 | 13 | | | | | | XL 007 | 62 | 53.8 | 33 | 1.0 | 15 | 64 | 55.3 | | | VCIA / VA Tech | VA12W-31 | 53 | 55.3 | 31 | 1.0 | 16 | 58 | 57.8 | | | | Mean | 63 | 54.0 | 33 | 1.0 | 10 | 66 | 55.9 | | | | LSD (.10) | 10 | 1.8 | 2 | NS | NS | 7 | 0.8 | | ¹CS = Cephalosoprium stripe expressed as % of diseased and stunted plants | _ | 1 | |----|----------| | 1 | | | _/ | - | | | • | | | | | | | 2017 means | | | | | |-----------------|----------|-------|------------|--------|------------|-------------------------|-------------|--------|----------| | | | Yiel | d Test wt. | Height | Lodging | FH | IB¹ | Yield | Test wt. | | Brand (Entrant) | Entry | (bu/a | a) (lb/bu) | (in.) | (1-5) | 1 % ² | S %³ | (bu/a) | (lb/bu) | | AgriMAXX | 413 | * 98 | 52.3 | 36 | 1.0 | 1 | 4 |
105 | 54.3 | | | 438 | 85 | 51.1 | 38 | 1.0 | 11 | 8 | 108 | 55.5 | | | 463 | * 97 | 54.9 | 36 | 1.0 | 1 | 4 | 108 | 54.5 | | | 473 | 91 | 55.0 | 39 | 1.0 | 6 | 8 | | | | | 475 | 95 | 56.1 | 34 | 1.0 | 2 | 4 | | | | | 485 | 94 | 53.2 | 35 | 1.0 | 1 | 4 | 108 | 56.0 | | | 486 | * 96 | 55.5 | 37 | 1.0 | 12 | 5 | * 113 | 55.4 | | | Exp 1884 | * 101 | 53.9 | 36 | 1.0 | 3 | 6 | | | | | Exp 1899 | 95 | 53.4 | 35 | 1.0 | 3 | 13 | | | | Albert Lea Seed | LCS 3204 | 91 | 58.3 | 39 | 1.0 | 13 | 9 | | | | Beck | 730 | * 98 | 51.5 | 35 | 1.0 | 4 | 5 | | | | CROPLAN | CP8550 | 95 | 54.8 | 39 | 1.0 | 2 | 5 | | | | | CP9415 | 94 | 55.0 | 35 | 1.0 | 6 | 8 | | | | | CP9606 | 88 | 52.0 | 36 | 1.0 | 19 | 9 | | | | Diener | D491W | * 99 | 55.4 | 35 | 1.0 | 4 | 8 | 97 | 54.1 | | | D496W | * 96 | 54.8 | 35 | 1.0 | 2 | 4 | 105 | 54.5 | | | D498W | * 101 | 54.7 | 35 | 1.0 | 3 | 6 | * 114 | 57.1 | | | D505W | * 98 | 54.4 | 37 | 1.0 | 1 | 6 | | | | Dyna-Gro | 9522 | 91 | 53.5 | 36 | 1.0 | 1 | 4 | 110 | 55.8 | | | 9701 | * 96 | 54.6 | 39 | 1.0 | 6 | 5 | 109 | 56.1 | | | 9750 | * 96 | 54.6 | 35 | 1.0 | 1 | 4 | 105 | 54.4 | | | 9862 | * 98 | 53.6 | 35 | 1.0 | 4 | 5 | 109 | 55.5 | | | WX17775 | * 100 | 52.8 | 36 | 1.0 | 2 | 5 | | | | FS Seed | FS 603 | * 98 | 55.5 | 35 | 1.3 | 8 | 5 | * 118 | 57.0 | | | FS 615 | 91 | 53.9 | 37 | 1.0 | 3 | 8 | * 112 | 55.8 | | | FS 619 | 92 | 54.8 | 38 | 1.0 | 1 | 6 | 110 | 55.8 | | | FS 624 | * 98 | 54.5 | 37 | 1.0 | 7 | 14 | * 115 | 57.2 | | | WX18A | * 100 | 53.8 | 36 | 1.0 | 1 | 8 | | | | | WX18C | 94 | 53.5 | 35 | 1.0 | 5 | 6 | | | | | WX18D | 87 | 52.5 | 37 | 1.0 | 4 | 10 | | | | Jung | 5845 | * 96 | 52.7 | 37 | 1.0 | 1 | 8 | 95 | 55.4 | | | 5850 | 84 | 50.4 | 37 | 1.0 | 8 | 15 | 98 | 55.7 | | | 5855 | 91 | 53.3 | 37 | 1.0 | 9 | 14 | 102 | 55.8 | | | 5888 | 90 | 52.6 | 38 | 1.0 | 5 | 9 | 100 | 56.0 | | | 5930 | 92 | 53.0 | 38 | 1.0 | 2 | 6 | 81 | 53.9 | ^{*} Yield is not significantly different (0.10 level) than that of the highest yielding cultivar ¹ Fusarium head blight ² % incidence ³ % severity | × | | | | | 2018 m | eans | | | 2017 means | | | |------------------------|----------|---|--------|----------|--------|---------|-------------------------|-----------------|------------|--------|----------| | | | | Yield | Test wt. | Height | Lodging | FH | IB ¹ | | Yield | Test wt. | | Brand (Entrant) | Entry | | (bu/a) | (lb/bu) | (in.) | (1-5) | 1 % ² | S %³ | | (bu/a) | (lb/bu) | | Kratz Farms | KF 15144 | | 91 | 53.5 | 38 | 1.0 | 12 | 9 | | 89 | 54.2 | | | KF 15241 | * | 98 | 55.0 | 37 | 1.0 | 5 | 9 | | 90 | 54.9 | | | KF 15334 | | 86 | 53.5 | 37 | 1.0 | 2 | 8 | | 104 | 56.7 | | | KF 15639 | | 93 | 55.8 | 40 | 1.3 | 6 | 9 | | | | | | KF 222 | | 89 | 52.7 | 37 | 1.0 | 10 | 9 | | 89 | 54.4 | | | KF 468 | | 95 | 55.4 | 37 | 1.0 | 3 | 5 | | 84 | 54.2 | | | KF 553 | | 87 | 54.3 | 38 | 1.0 | 3 | 9 | | 104 | 56.6 | | | KF 727 | | 81 | 53.4 | 35 | 1.0 | 5 | 10 | | 107 | 55.6 | | L-Brand (Ag Pro) | L-304 | | 92 | 56.5 | 39 | 1.0 | 5 | 6 | | 97 | 58.2 | | | L-408 | | 83 | 52.0 | 36 | 1.0 | 2 | 6 | | | | | | L-416 | | 90 | 53.6 | 39 | 1.0 | 11 | 19 | * | 113 | 56.1 | | | L-418 | | 93 | 55.1 | 35 | 1.0 | 2 | 9 | | | | | | L-424 | | 82 | 53.1 | 36 | 1.0 | 2 | 5 | | 109 | 55.2 | | | L-488 | | 85 | 52.9 | 36 | 1.0 | 6 | 8 | | | | | | L-Star | * | 98 | 52.1 | 38 | 1.0 | 13 | 21 | * | 116 | 56.2 | | L-Brand (Welter) | L-334 | | 89 | 53.8 | 37 | 1.0 | 1 | 8 | | 105 | 57.0 | | Legacy | LW 1155 | | 93 | 51.9 | 35 | 1.0 | 1 | 5 | | 107 | 54.2 | | | LW 1695 | | 95 | 53.9 | 38 | 1.0 | 1 | 4 | | 107 | 55.8 | | | LW 1745 | * | 97 | 55.6 | 36 | 1.0 | 1 | 6 | * | 113 | 56.8 | | | LW 1776 | | 91 | 53.1 | 34 | 1.0 | 3 | 5 | | 107 | 55.6 | | | LWX 1785 | * | 99 | 54.8 | 35 | 1.0 | 1 | 5 | | | | | Limagrain Cereal Seeds | L11719 | * | 97 | 54.4 | 33 | 1.0 | 13 | 8 | | | | | PiP | 706 | | 93 | 53.0 | 35 | 1.0 | 3 | 6 | | | | | | 707 | | 92 | 51.5 | 36 | 1.0 | 4 | 8 | | | | | | 714 | * | 98 | 55.3 | 37 | 1.0 | 4 | 5 | | 110 | 54.6 | | | 715 | | 95 | 56.1 | 39 | 1.0 | 5 | 6 | | 101 | 55.6 | | | 716 | * | 100 | 54.2 | 36 | 1.0 | 3 | 9 | * | 112 | 54.3 | | | 720 | | 88 | 53.9 | 35 | 1.0 | 5 | 18 | | 107 | 55.4 | | | 721 | | 90 | 51.3 | 39 | 1.0 | 13 | 9 | | 106 | 55.1 | | | 735 | * | 100 | 54.0 | 35 | 1.0 | 3 | 8 | | 94 | 53.6 | | | 736 | | 94 | 52.6 | 37 | 1.0 | 9 | 9 | * | 114 | 55.9 | | | 744 | * | 99 | 51.5 | 36 | 1.0 | 3 | 6 | | 106 | 54.9 | | | 745 | * | 100 | 56.0 | 35 | 1.0 | 2 | 5 | * | 113 | 56.9 | | | 748 | | 92 | 53.2 | 36 | 1.0 | 1 | 6 | | | | | | 749 | | 91 | 54.9 | 36 | 1.0 | 3 | 4 | | | | | | 750 | * | 99 | 56.1 | 38 | 1.0 | 3 | 6 | | | | | | 751 | | 92 | 56.2 | 37 | 1.0 | 4 | 6 | | | | | | 753 | | 95 | 57.8 | 36 | 1.0 | 2 | 9 | | | | | | 754 | * | 99 | 54.6 | 34 | 1.0 | 24 | 10 | | | | ^{*} Yield is not significantly different (0.10 level) than that of the highest yielding cultivar ¹ Fusarium head blight ² % incidence ³ % severity | | | | | 2017 : | means | | | | | | |-------------------|------------------|---|--------|----------|--------|---------|-------------------------|-------------|--------|----------| | | | | Yield | Test wt. | Height | Lodging | FH | IB¹ | Yield | Test wt. | | Brand (Entrant) | Entry | | (bu/a) | (lb/bu) | (in.) | (1-5) | 1 % ² | S %³ | (bu/a) | (lb/bu) | | Pro Seed Genetics | PRO 260 | | 91 | 51.5 | 33 | 1.0 | 18 | 14 | 103 | 55.1 | | | PRO 320A | | 79 | 55.3 | 40 | 1.0 | 1 | 10 | 101 | 55.0 | | | PRO 380 | | 92 | 56.1 | 37 | 1.8 | 5 | 11 | 105 | 58.5 | | | PRO 410 | | 95 | 54.4 | 37 | 1.0 | 7 | 18 | * 113 | 56.8 | | | PRO Ex 440A | | 94 | 51.5 | 35 | 1.0 | 2 | 9 | | | | | PRO Ex 450 | | 94 | 56.5 | 34 | 1.0 | 7 | 18 | | | | Public | Harpoon | * | 99 | 54.3 | 35 | 1.0 | 1 | 5 | 108 | 54.5 | | | Kaskaskia | | 88 | 54.9 | 43 | 2.0 | 19 | 14 | 85 | 56.5 | | | Kokosing | | 88 | 54.3 | 39 | 1.0 | 20 | 16 | | | | | Red Devil Brand | | 90 | 54.8 | 41 | 1.0 | 4 | 14 | 99 | 56.1 | | | Red Dragon Brand | * | 96 | 53.4 | 41 | 1.0 | 15 | 23 | 95 | 53.6 | | | Starburst | | 84 | 55.8 | 30 | 1.0 | 13 | 8 | 101 | 58.3 | | | Sunburst | | 82 | 56.3 | 32 | 1.0 | 8 | 8 | 91 | 58.1 | | | Whale | | 89 | 52.7 | 37 | 1.0 | 8 | 11 | 97 | 55.7 | | Syngenta | SY 100 | | 88 | 49.8 | 35 | 1.0 | 10 | 5 | 109 | 53.1 | | | SY 547 | * | 96 | 55.5 | 38 | 1.0 | 2 | 8 | 105 | 56.2 | | Van Treeck's | Bonanza | | 94 | 53.6 | 40 | 1.0 | 11 | 20 | 105 | 55.4 | | | Echo | * | 96 | 54.4 | 35 | 1.0 | 11 | 13 | | | | | XL 007 | | 89 | 52.4 | 37 | 1.0 | 4 | 11 | 111 | 56.1 | | VCIA / VA Tech | VA12W-31 | | 91 | 54.9 | 36 | 1.0 | 5 | 10 | 100 | 56.2 | | | Mean | | 93 | 54.0 | 36 | 1.0 | 6 | 8 | 103 | 55.5 | | | LSD (.10) | | 5 | 1.5 | 1 | 0.2 | 5 | 5 | 6 | 0.7 | ^{*} Yield is not significantly different (0.10 level) than that of the highest yielding cultivar **Copyright** © **2018** by the Board of Regents of the University of Wisconsin System doing business as the division of Cooperative Extension of the University of Wisconsin-Extension. All rights reserved. **Authors:** Shawn P. Conley is professor of Agronomy, Adam C. Roth is senior research specialist in Agronomy, John M. Gaska is senior research agronomist in Agronomy, Brian Mueller is graduate research assistant in Plant Pathology, and Damon L. Smith is assistant professor of Plant Pathology, College of Agricultural and Life Sciences, University of Wisconsin-Madison. Shawn P. Conley and Damon L. Smith also hold appointments with University of Wisconsin-Extension, Cooperative Extension. Cooperative Extension publications are subject to peer review. University of Wisconsin-Extension, Cooperative Extension, in cooperation with the U.S. Department of Agriculture and Wisconsin counties, publishes this information to further the purpose of the May 8 and June 30, 1914, Acts of Congress. An EEO/AA employer, University of Wisconsin-Extension provides equal opportunities in employment and programming, including Title VI, Title IX, and the Americans with Disabilities Act (ADA) requirements. If you have a disability and require this information in an alternative format (Braille, large print, audiotape, etc.), please contact oedi@uwex.uwc.edu.. For communicative accommodations in languages other than English, please contact languageaccess@ces.uwex.edu.. If you would like to submit a copyright request, please contact Cooperative Extension Publishing at 432 N. Lake St., Rm. 227, Madison, WI 53706; pubs@uwex.edu; or (608) 263-2770 (711 for Relay). **This publication is available** from your county UW-Extension office (<u>counties.uwex.edu</u>) or from Cooperative Extension Publishing. To order, call toll-free 1-877-947-7827 or visit our website at <u>learningstore.uwex.edu</u>. ¹ Fusarium head blight ² % incidence ³ % severity