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IN A BEAN POD:
 X The effect of background management on crop yield is often ignored  

due to complexity

 X Data science was used to develop and analyze diverse datasets 

 X Machine learning algorithms can identify farm-specific hidden  
yield potential 

 X The effect of multiple management interactions on crop yield can greatly 
influence corn grain and soybean seed yield and should not be ignored

 X A single optimal solution does not necessarily exist and different combi-
nations of management practices, when they interact with environment, 
can still result in similar high yields

INTRODUCTION
Increasing food demand will challenge the agricultural sector globally over the next 
decades (Godfray et al, 2010). A sustainable solution to this challenge is to increase 
crop yield without massive cropland area expansion. This can be achieved by iden-
tifying and adopting best management practices. To do so requires a more detailed 
understanding of how crop yield is impacted by climate change (Schlenker and Lo-
bell, 2010; Mourtzinis et al., 2015) and growing-season weather variability (Hoffman 
et al., 2020). Even with that knowledge, prediction is challenging because various 
factors interact with each other. For example, variability in soil type can interact with 
weather conditions and mitigate or aggravate climate-related impacts on crop yield. 
Additionally, seed genetics (G) and crop management decisions (M), interact with the 
effect of environment (E: soil and in-season weather conditions), thereby resulting in 
a near infinite number of combinations of G × E × M that can impact crop yield. 

Replicated field experiments have been used to identify best management practices 
for several decades. Most commonly, the effectiveness of up to three management 
factors and their interactions are evaluated in a single location due to practical 
constraints (e.g., cost, logistics). By holding the background management constant, 
causal relationships are identified, and the effectiveness of the examined manage-
ment practice/s is assessed. It is assumed that background management practices 
are optimal or at least relevant to what most farmers use in the region, which in fact 
may not be realistic for many farmers. 

Multi-year-site performance trials that account for large environmental and back-
ground management variability is another common practice in agricultural research. 
Such trials usually estimate an average effect across environments and background 
cropping systems. Inevitably, the measured yield response magnitude and sign may 
not apply to all farms in the examined region. Other research approaches involve 
analysis of producer self-reported data (Rattalino Edreira et al., 2017; Mourtzinis et al., 
2018), which can capture yield trends attributable to producer management choice 
across large regions, but such studies lack sufficient power relative to establishing 
causality and evaluating complex high-order G × E × M interactions. 
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Process-based models have been extensively used to evaluate the effect of weather 
(Frieler et al, 2017) and management (Rong et al., 2019) on crop yield. However, to 
obtain accurate estimates, the models require extensive calibration, which is not a 
trivial task due to the large number of parameters. Specifically, it has been shown 
that management is an important source of uncertainty in process-based models, 
which can lead to substantial and varying degree of bias in yield estimates across the 
US, even when using harmonized parameters (Leng and Hall, 2020). 

Given all the well-known deficiencies of current agricultural research methods, 
we argue that a method that allows environment-specific identification of unique 
cropping systems with the greatest yield potential is essential to meet future food 
demand. Here, by utilizing corn and soybean yield and management data from 
publicly available performance tests, plus associated weather data, and by leverag-
ing the power of machine learning (ML) algorithms, we developed a method that can 
evaluate myriads of potential crop management systems and thereby identify those 
with the greatest yield potential in specific environments across the US.

METHODS
Two databases including yield, management, and weather data for corn (n=17,013) 
and soybean (n=24,848) involving US crop performance trials conducted in 28 states 
between 2016 to 2018 for corn and between 2014 to 2018 for soybean, were devel-
oped (Fig. 1). For each crop, an ML algorithm to estimate yield based on soil type and 
weather conditions (E), seed traits (G) and management practices (M) was developed.

RESULTS AND DISCUSSION
The developed algorithms exhibited a high degree of accuracy when estimating 
yield in independent datasets (test dataset not used for model calibration) (Fig. 2). 
For corn, the root mean square error (RMSE) and mean absolute error (MAE) was a 
respective 4.7 and 3.6% of the dataset average yield (213 bu/ac). For soybean, the 
respective RMSE and MAE was 6.3 and 4.8% of the dataset average yield (62 bu/ac). 
As is evident in the graphs (Fig. 2), estimated yields exhibited a high degree of cor-
relation with actual yields for both algorithms in the independent datasets. For corn 
and soybean, 72.3 and 60% of cases in the test dataset deviated less than 5% from 
actual yields, respectively. Data points with deviations greater than 15% from actual 

Figure 1. Locations where corn and soybean 
trials were performed during the examined period. 
The map was developed in ArcGIS Pro 2.8.0  
(https://www.esri.com).  
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yield were 1.5% in corn and 3.6% in soybean databases. These results suggest that 
the developed algorithms can accurately estimate corn and soybean yields utilizing 
database-generated information involving reported environmental, seed genetic, 
and crop management variables.

In contrast to statistical models, ML algorithms can be complex, and the effect of 
single independent variables may not obvious. However, accumulated local effects 
(ALE) plots (Apley and Zhu, 2016) can aid the understanding and visualization of 
important and possibly correlated features in ML algorithms. For both crops, indica-
tively important variables included planting date, seeding rate, nitrogen fertilizer (for 
corn), row spacing (for soybean) and June to September cumulative precipitation 
(Fig. 3). Across the entire region and for both crops, the algorithm-derived trends 
suggest that above average yields occur in late April to early May planting dates, but 
sharply decrease thereafter. Similar responses have been observed in many regional 
studies across the US for both, corn (Long et al, 2017) and soybean (Mourtzinis et al, 
2019). Similarly, simulated yield curves due to increasing seeding rate are in close 
agreement with previous corn (Light et al., 2016) and soybean (Gaspar et al., 2020) 
studies. The corn algorithm has captured the increasing yield due to increasing N 
fertilizer rate. The soybean algorithm suggests that narrower row spacing resulted in 
above average yield compared to wider spacing. Such response has been observed 
in many regions across the US (Andrade et al., 2019). Season cumulative precipitation 
between 16 and 28 inches resulted in above average yields for both crops. 

Figure 2. Actual vs algorithm-derived corn 
(left) and soybean (right) yield in test datasets. 
Black solid line indicates y=x, red short-dashed 
lines, black dashed lines, and red long-dashed lines 
indicate ± 5, 10, and 15% deviation from the y=x 
line. RMSE, root mean square error; MAE, mean 
absolute error; r2, coefficient of determination; 
n=number of observations. Each observation 
corresponds to a yield of an individual cropping 
system in a specific environment (location-year). 

Figure 3. Accumulated local effect plots for 
corn planting date (A), seeding rate (B), Nitrogen 
fertilizer rate (C), and cumulative precipitation 
between June and September (D), and soybean 
planting date (E), seeding rate (F), row spacing 
(G), and cumulative precipitation between June 
and September (H). 
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The responses in the ALE plots (Fig. 3) suggest that these algorithms have captured 
the general expected average responses for important single features. Nevertheless, 
our databases include hundreds of locations with diverse environments across the US 
and site-specific crop responses which may vary due to components of the G × E × M 
interaction. We argue that, instead of examining a single or low-order management 
interactions, site-specific evaluation of complex high order interactions (a.k.a. crop-
ping systems) can reveal yield differences that current research approaches cannot 
fully explore and quantify. For example, planting date exerts a well-known impact on 
corn and soybean yield. For each crop separately, by creating a hypothetical crop-
ping system (a single combination of all variables) in a randomly chosen field in south 
central Wisconsin (latitude=43.34, longitude=-89.38), and by applying the developed 
algorithms, we can generate estimates of corn and soybean yield. For that specific 
field and cropping system (out of the vast number of management combinations a 
farmer can choose from), corn yield with May 1st planting was 11.5 bu/ac greater (6% 
increase) than June planting (Fig. 4 A). By creating scenarios with 256 background 
cropping system choices (Table 1), the resultant algorithm-derived yield estimate 
difference for the same planting date contrast (averaged across varying cropping sys-
tems) was smaller but still positive (3% increase), although the range of possible yield 
differences was wider (Fig. 4 B). However, when comparing, instead of averaging, the 
estimated yield potential among the simulated cropping systems, a 46.6 bu/ac yield 
difference (25% difference) was observed (Fig. 4 C). Interestingly, when focusing on 
the early sown fields that were expected to exhibit the greatest yield, the same yield 
difference was observed (Fig. 4 D). This result shows that sub-optimal background 
management can mitigate the beneficial effect of early planting (Table 2).

Figure 4. Corn yield difference (in bu/ac and percentage) due to planting date (May 1st vs June 1st) for a single identical background cropping system (A), 
corn yield difference due to planting date when averaged across 256 (3 years × 256 cropping systems=768 year-specific yields) (B), corn yield variability in 
each of the 256 cropping systems (C), and corn yield variability in each of the 128 cropping systems with early planting (D). Soybean yield difference due to 
planting date (May 1st vs June 1st) for a single identical background cropping system (E), soybean yield difference due to planting date when averaged across 128 
(5 years × 128 cropping systems=640 year-specific yields) (F), soybean yield in each of the 128 cropping systems (G) and soybean yield variability in each of 
the 64 cropping systems with early planting (H). Within each panel, the horizontal red and grey lines indicate the boxplot with maximum and minimum yield, 
respectively. In the left four panels, boxes delimit first and third quartiles; solid lines inside boxes indicate median and green triangles indicate means. Upper 
and lower whiskers extend to maximum and minimum yields. Each corn and soybean cropping system is a respective interaction of management practices in a 
randomly chosen field in Wisconsin, USA. 
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Table 1. Levels of variables used to generate the hypothetical cropping 
systems for corn. Each cropping system is a unique combination of the 
levels in the table holding constant the rest background management 
practices.

Variable Levels used
Planting date May 1st, June 1st 
Tillage practice Conventional, No-till

Seeding rate (seeds/ac) 28,000, 36,000

Nitrogen fertilizer (bu/ac) 125, 200

Phosphorous fertilizer (bu/ac) 0, 35

Cultivar relative maturity (company rating) 100, 110

Manure yes, no

Previous crop corn, soybean

Table 2. Levels/rates of management practices in the 5% highest and 
lowest yielding corn cropping systems with early planting date (May 1st).

Highest yielding 
systems

Lowest yielding 
systems

 Nitrogen (bu/ac) 200 125
 Phosphorous (bu/ac) 35 0

 Maturity 110 100

Seeding rate (seeds/ac) 36,000 28,000

 Previous crop Soybean Corn

Tillage practice Conventional No-till 

Manure use yes no

Table 3. Levels of variables used to generate the hypothetical cropping 
systems for soybean. Each cropping system is a unique combination 
of the levels in the table holding constant the rest background 
management practices.

Variable Levels used
Sowing date May 1st, June 1st 
Tillage practice Conventional, No-till

Seeding rate (seeds/ac) 140,000, 160,000

Row spacing (inches) 14, 30

Foliar fungicide use yes, no

Cultivar maturity group 1, 2

Previous crop corn, soybean

Table 4. Levels/rates of management practices in the 5% highest and 
lowest yielding soybean cropping systems with early planting date ( 
May 1st).

Highest yielding 
systems

Lowest yielding 
systems

Cultivar maturity group 2 1
Seeding rate (seeds/ac) 160,000 140,000

Row spacing (inch) 14 30

 Foliar Fungicide use yes no 

Tillage practice No-till No-till

 Previous crop Corn Soybean
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In the case of soybean, a May 1st planting resulted in greater yield (8.7 bu/ac; a 14% 
increase) than a June 1st in the single background cropping system (Fig. 4 E). The 
result was consistent when yield differences due to planting date were averaged 
across 128 background cropping system choices (Table 3) (Fig. 4 F). Similar to what 
was observed in corn, among all cropping systems, yield varied by 25.3 bu/ac (44% 
difference) (Fig. 4 G). When focusing only on the early sown fields, a 17.6 bu/ac yield 
difference (27% yield increase) was observed (Fig. 4 H). In agreement with corn, this 
result highlights the importance of accounting for sub-optimal background manage-
ment which can mitigate the beneficial effect of early planting (Table 4).

We note here the ability of farmers to change management practices can be lim-
ited due to an equipment constraint (e.g., change planter unit row width) or simply 
impossible (e.g., change the previous year’s crop). Thus, recommended management 
practices that were evaluated in studies that used specific background management 
may not be applicable in some instances. The benefits of the foregoing approach, 
which involves extensive up-to-date agronomic datasets and high-level computa-
tional programing, can have important and immediate implications in future agricul-
tural trials. Our approach allows for more precise examination of complex manage-
ment interactions in specific environments (soil type and growing season weather) 
across the US (region covered in Fig. 1). 

It appears that several different cropping systems can result in similar high yield for 
both crops (Fig. 4 C, D and G, H). Moreover, it is common for neighboring farms to at-
tain similar crop yield despite the use of a different cropping system, suggesting that 
a single optimal solution does not necessarily exist and that different combinations 
of management practices, when they interact with environment, can still result in 
similar high yields. Since the effect of environment is ever-changing, the high level of 
complexity of synergies between G × E × M suggests that long-term optimization of 
single management factor may not be possible, which further highlights the impor-
tance of accounting for the effect of the entire cropping system at the field level.

The algorithms we present here can generate hypothetical experimental data that 
can be used to rapidly examine G × E × M interaction for both corn and soybean 
across the US. Of the millions of possible G × E × M combinations, our ML algo-
rithms can identify hidden complex patterns between G × E × M combinations for 
yield optimization that may be non-obvious, but once identified, worthy of field 
test confirmation. Farmers can use the algorithms to gain insights about optimum 
management interactions in their location-specific environment (known soil type × 
expected weather conditions), and to identify farm factors that may be too costly to 
alter without a priori reason (generated by the model) for doing so. Researchers can 
compare expected yield across thousands of hypothetical cropping systems and use 
the results as a guide to design more efficient future field-based crop management 
practice evaluation experiments. 

We note that this approach should not be considered as a substitute of replicated 
trials. To the contrary, replicated field trials performed by Universities are continually 
needed to serve as an excellent source of high-quality unbiased data which can be 
used to train even more comprehensive algorithms. The major issue with current per-
formance trial data is that a great amount of management information is not report-
ed. Usually, only information relevant to the examined management factors in each 
trial are reported, which inevitably results in missing values, or even in absence of 
important variables (e.g., number and dates of split fertilizer application). As we have 
highlighted here, the high order and complex background management interactions 
should not be considered as irrelevant. 

CONCLUSIONS
Agricultural experiments repeated every year in hundreds of locations across the US 
generate a vast amount of crop yield and management datasets which are useful to 
identify average effects of management practices across a range of environments. 
Such datasets have, to date, remained disconnected from each other, and are difficult 
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to combine, standardize, and properly analyze. In the presented work, we overcame 
these issues by developing large databases and by leveraging the power of ML al-
gorithms. We argue that our algorithms can advance agricultural research and aid in 
revealing a currently hidden yield potential in each individual farm across the US.
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