# COMMENTS FROM COOLBEAN



# **Production of Specialty Small Grains in Wisconsin**

# Haleigh Ortmeier-Clarke<sup>1</sup>, Spyros Mourtzinis<sup>1</sup>, Laura Lindsey<sup>2</sup>, and Shawn Conley<sup>1</sup>

<sup>1</sup>University of Wisconsin, Madison and <sup>2</sup>THE<sup>™</sup>Ohio State University

## Short and S-Wheat

- Diverse small grain species can be produced in Wisconsin.
- The lack of specialized management recommendations and markets may be a hindrance to growers choosing to pursue specialty grains.

# Introduction

Small grain production is Wisconsin is largely made up of soft red winter wheat and rye, with 265,000 (~80% grain acres) and 260,000 (~12% grain acres) acres planted in 2024, respectively (NASS, 2024). Soft red winter wheat is a class of wheat that is used for a variety of food products, such as cookies and crackers (U.S. Wheat Associates, 2024). Other commonly grown small grains in the state include oat, with 140,000 acres planted in 2024, and barley, with 15,000 acres planted in 2024 (NASS, 2024). However, there is an increase in interest for locally produced food ingredients, which may drive interest in specialty small grains (Table 1).

The six U.S. wheat classes are determined by their red or white bran color, hard/high or soft/low protein content, and winter or spring growth habit (Table 1). Some species, like spelt, einkorn, and emmer, considered "ancient wheats", may have lower yields due to minimal genetic improvement and require post-harvest processing to de-hull the grain (Thapa et al., 2023). These challenges may be countered by lower fertilizer requirements and higher consumer demands (Cadeddu et al., 2021). Barley, oat, rye, triticale, and other small grains are commonly grown as a forage or cover crop, but they can also be utilized as food ingredients for both humans and livestock.

# Materials & Methods

An experiment was established at the Arlington Agricultural Research Station in Columbia County, Wisconsin to compare the grain yields of different small grain species. The trial was established across three growing seasons (2020-2021, 2021-2022, 2022-2023). Planting and harvest dates, along with spring fertilizer rate and application dates can be found in Table 2. The previous crop was soybean in all years and small grains were direct seeded into 7.5" rows. The seeding rate varied by small grain type. Wheat (soft red winter, soft white winter, hard red winter, hard white winter, hard red spring, and durum) was seeded at a rate of 1.75 million seeds per acre. Spelt, triticale, oat, and barley (winter malting, spring malting, spring non-malting were seeded at a rate of 1.5 million seeds per acre. Non-hybrid winter rye, einkorn, and emmer were seeded at a rate of 1.0 million seeds/acre and hybrid winter rye was seeded at a rate of 800,000 seeds per acre. Management decisions were based on state recommendations for wheat. All fall planted treatments received 55 lb. N per acre at green-up (~Feekes 3-4) and all spring planted treatments received 20 lb. N per acre at or shortly after planting.

| Table 1. Small grains by primary U.S. | production areas and common end-uses. |
|---------------------------------------|---------------------------------------|
|---------------------------------------|---------------------------------------|

| Small Grains              | Primary Production Area                                                                       | End-Use                                                                    |
|---------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                           | U.S. Wheat Classes                                                                            |                                                                            |
| Soft red winter wheat     | Eastern portion of the US                                                                     | Sponge cakes, cookies,<br>crackers, and other<br>confectionary products    |
| Soft white wheat          | Pacific Northwest with small<br>acreage in Michigan                                           | Sponge cakes and Asian noodles                                             |
| Hard red winter wheat     | Great Plains, Pacific<br>Northwest, and California                                            | Pan breads, hard rolls, croissants, and flat breads                        |
| Hard white wheat          | Central Plains (Nebraska,<br>Kansas, Colorado) and<br>California                              | Asian noodles, pan breads,<br>and flat breads                              |
| Hard red spring wheat     | North Central Region (North<br>Dakota, South Dakota,<br>Montana)                              | Bagels, artisan breads, pizza<br>crust, and other strong dough<br>products |
| Durum                     | North Dakota with smaller<br>acreage in Montana and<br>California                             | Pasta, couscous, and some<br>Mediterranean breads                          |
|                           | Ancient Wheats                                                                                | r                                                                          |
| Spelt, Einkorn, and Emmer | Scattered production in North<br>Central Region and Eastern<br>U.S.                           | Flour, health food products                                                |
|                           | Other Small Grains                                                                            |                                                                            |
| Barley                    | Central Plains and Pacific Animal feed, ma<br>Northwest cereals, s                            |                                                                            |
| Triticale                 | Scattered production in<br>Pacific Northwest, Midwest,<br>and South                           | Animal feed, health food<br>market                                         |
| Rye                       | Oklahoma, Pennsylvania,<br>Wisconsin, North Dakota                                            | Animal feed, flour, alcoholic<br>products                                  |
| Oat                       | Central Plains, North Central<br>Region (North Dakota, South<br>Dakota), Texas, and Wisconsin | Animal feed, rolled oats, oat<br>flour                                     |

Table adapted from (Lindsey, 2024).

Table 2. Planting, spring fertilizer application, and harvest dates for the experiment planted at the Arlington Agricultural Research Station in Columbia County, Wisconsin in 2021-2023.

|                 | Fall Plante  | d Treatments  |               |  |  |
|-----------------|--------------|---------------|---------------|--|--|
|                 | 2021         | 2022          | 2023          |  |  |
| Planting Date   | 09/25/20     | 09/29/21      | 09/23/22      |  |  |
| Fertilizer Date | 03/29/21     | 04/11/22      | 04/10/23      |  |  |
| (55 lbs N/a)    |              |               |               |  |  |
| Harvest Date    | 07/21/21     | 07/29/22      | 07/25/23      |  |  |
|                 | Spring Plant | ed Treatments |               |  |  |
|                 | 2021         | 2022          | 2023          |  |  |
| Planting Date   | 03/31/21     | 04/12/22      | 2/22 04/10/23 |  |  |

| Fertilizer Date | 04/06/21 | 04/12/22 | 04/10/23 |
|-----------------|----------|----------|----------|
| (20 lbs N/a)    |          |          |          |
| Harvest Date    | 07/26/21 | 08/11/22 | 08/02/23 |

## Results

Winter Small Grains. Hybrid winter rye averaged the highest grain yield across the three years, at 121 bu/acre. Soft red and soft white winter wheat were the next highest, at 98 bu/acre. This was followed by hard white winter wheat, winter malting barley, and non-hybrid winter rye at 90, 88, and 85 bu/acre, respectively. Hard red winter wheat and triticale had average yields of 81 and 78 bu/ac, respectively. Spelt averaged the lowest yields, at an average of 63 bu/acre. The yield of the winter small grains, separated by variety, can be found in Table 3.

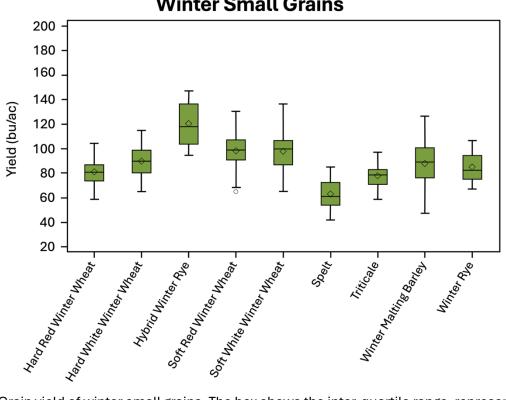



Figure 1. Grain yield of winter small grains. The box shows the inter-quartile range, representing the middle 50% of the value. The solid line within each shaded box represents the median value and diamond shows the mean value. The upper and lower whiskers represent the maximum and minimum value, respectively. Open circles show potential outliers.

Spring Small Grains. While oat yielded the highest average across the three years, at 112 bu/acre, yields were incredibly variable across years. Spring malting barley and non-malting barley averaged yields of 82 and 72 bu/ac, respectively. The two spring wheats, hard red spring and durum wheat, yielded much lower on average than the winter wheats, at 61 and 60 bu/ac, respectively. The spring planted ancient wheats consistently yielded the lowest, at 54 and 52 bu/ac, respectively. Overall, spring planted treatments were more variable between years compared to fall planted treatments. The yield of the spring small grains by variety are found in Table 4.

Winter Small Grains

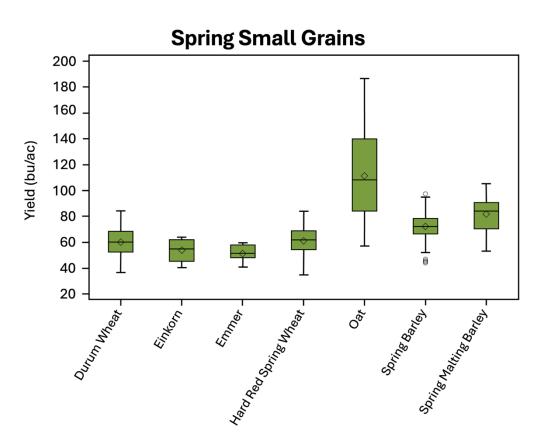



Figure 2. Grain yield of spring small grains. The box shows the inter-quartile range, representing the middle 50% of the value. The solid line within each shaded box represents the median value and diamond shows the mean value. The upper and lower whiskers represent the maximum and minimum value, respectively. Open circles show potential outliers.

#### **Conclusions & Considerations**

Across the three years, fall-planted small grains had higher average yields than the spring-planted grains. This could be attributed to the shorter growing season, making it more susceptible to issues due to weather and pests. Fall planted treatments yielded the highest in 2021 and the lowest in 2023. Spring planted treatments yielded the highest in 2021, which also corresponded to the earliest planting date.

Yield is important to consider when deciding species and varieties to plant, but there are other factors to consider. Most traditional grain elevators will not buy specialty grains, so be sure to have a contract and logistical plan in place before moving forward. There are also quality parameters to consider, based on the end-use of the selected grain. Measures of quality such as protein, test weight, grain plumpness, etc. may be important points to consider depending on the market you intend to sell to.

| Туре                          | Variety              | 202    |      |       | 202  |       |   | 202    | 23    |
|-------------------------------|----------------------|--------|------|-------|------|-------|---|--------|-------|
|                               |                      |        |      | Yield | d (b | u/ac) | ) |        |       |
|                               | Bakers Ann           | 80     | Α    |       |      | AB    |   | 81     | Α     |
|                               | Double Stop CL Plus  | 78     | A    |       | 76   | BC    |   | 77     | AB    |
|                               | Expedition           | 79     | A    |       | 83   | AB    |   | 83     | A     |
| Lloyd Dod Mintor Milesot      | Green Hammer         | 88     | A    |       | 66   | С     |   | 66     | В     |
| Hard Red Winter Wheat         | SY Wolf              | 80     | A    |       | 83   | AB    |   | 78     | AB    |
|                               | Showdown             | 93     | A    |       | 94   | Α     |   | 81     | Α     |
|                               | Skydance             | 92     | A    |       | 78   | BC    |   | 74     | Α     |
|                               | Smiths Gold          | 86     | A    |       | 84   | AB    |   | 82     | Α     |
|                               | Breck                | 82     | AB   |       | 93   | AB    |   | 89     | AB    |
|                               | Joe                  | 97     | AB   |       | 94   | AB    |   | 87     | AB    |
|                               | KS Silverado         | 91     | AB   |       | 83   | AB    |   | 82     | AB    |
|                               | Monarch              | 97     | AB   |       | 93   | AB    |   | 87     | AB    |
| Hard White Winter Wheat       | OCW04S717T-6W        | 96     | AB   |       | 87   | AB    |   | 81     | AB    |
|                               | OK 12716W            | 106    | A    |       | 97   | Α     |   | 90     | AB    |
|                               | Snowmass 2.0         | 92     | AB   | 1     | 00   | Α     |   | 98     | Α     |
|                               | Thunder CL           | 82     | В    |       | 77   | В     |   | 77     | В     |
|                               | KWS Bono             | 127    | Α    | 1     | 26   | Α     |   | 108    | Α     |
| Hybrid Winter Rye             | KWS Daniello         | 124    | A    | 1     | 30   | Α     |   | 100    | Α     |
|                               | KWS Propower         | 135    | A    | 1     | 37   | Α     |   | 98     | Α     |
|                               | 25R74                | 104    | Α    |       | 98   | A     |   | 97     | Α     |
|                               | D511W                | 98     | A    |       | 88   | A     |   | 99     | Α     |
|                               | DY 9862              | 101    | A    |       | 95   | Α     |   | 102    | Α     |
| Soft Dod Winter Wheet         | FS 623               | 104    | A    |       | 92   | A     |   | 89     | Α     |
| Soft Red Winter Wheat         | Harpoon              | 97     | A    | 1     | 00   | A     |   | 94     | Α     |
|                               | Jung 5888            | 109    | A    |       | 88   | A     |   | 88     | Α     |
|                               | LW 2023              | 110    | A    | 1     | 00   | Α     |   | 108    | Α     |
|                               | SY Viper             | 98     | A    |       | 95   | Α     |   | 102    | Α     |
|                               | Dyna-Gro 9242W       | 99     | AB   | 1     | 01   | Α     |   | 88     | AB    |
|                               | Jupiter              | 107    | AB   | 1     | 03   | A     |   | 94     | AB    |
|                               | KWS 317              | 116    | A    | 1     | 07   | Α     |   | 106    | Α     |
| Soft \//bito \//intor \//boot | MI14W0190            | 102    | AB   |       | 98   | Α     |   | 81     | В     |
| Soft White Winter Wheat       | MI16W0133            | 100    | AB   |       | 99   | Α     | 1 | 84     | В     |
|                               | MI16W0528            | 105    | AB   | 1     | 05   | A     |   | 91     | AB    |
|                               | Moonlight            | 95     | В    |       | 96   | Α     |   | 84     | В     |
|                               | Whitetail            | 106    | AB   |       | 99   | A     |   | 81     | В     |
|                               | Comet                | 77     | Α    |       | 61   | AB    |   | 54     | AB    |
| Spelt                         | Sabre                | 62     | В    |       | 57   | В     |   | 48     | В     |
| -                             | Sungold              | 77     | A    |       | 70   | Α     |   | 60     | Α     |
|                               | Gainer 154           | 78     | Α    |       | 83   | Α     |   | 75     | Α     |
| Triticale                     | Trical 815           | 85     | A    | No    | t te | sted  | 1 | Not te | ested |
|                               | Trical exp 917 "Ace" | Not te | sted |       | 72   | Α     |   | 74     | Α     |
|                               | Avalon               | 90     | Α    |       | 69   | В     |   | 54     | В     |
|                               | Flavia               | 101    | A    | No    | t te | sted  |   | Notte  | ested |
| Winter Malting Barley         | Hirondella           | 96     | A    |       | 97   | Α     |   | 86     | Α     |
|                               | Marouetta            | Not te | sted |       | 83   | AB    |   | 95     | Α     |
|                               | Thoroughbred         | 103    | A    |       | 83   | AB    |   | 96     | Α     |
|                               | Danko                | 93     | Α    |       | 92   |       |   | 83     | Α     |
| Winter Rye                    | Hazlet               | 86     | AB   |       | 99   | Α     |   | 83     | Α     |
| -                             | Spooner              | 80     | В    |       | 76   | В     |   | 73     | Α     |

Table 3. Grain yield of winter small grains. Different letters within a small grain type and year indicate a statistically significant difference in grain yield at 95% confidence.

| Туре                  | Variety             | 2021          | 2022       | 2023       |  |  |
|-----------------------|---------------------|---------------|------------|------------|--|--|
|                       |                     | Yield (bu/ac) |            |            |  |  |
|                       | Alzada              | 56.6 BC       | 46.0 B     | 55.3 B     |  |  |
|                       | Divide              | 52.3 C        | 49.9 B     | 58.9 AB    |  |  |
|                       | Joppa               | 70.6 A        | 62.7 A     | 59.3 AB    |  |  |
| Durum Wheat           | Lustre              | 67.0 AB       | 51.0 B     | 61.8 AB    |  |  |
|                       | ND Gano             | 70.2 A        | 56.6 AB    | 68.3 A     |  |  |
|                       | ND Riveland         | 66.7 AB       | 53.1 AB    | 69.0 A     |  |  |
|                       | TCG-Bright          | 68.0 AB       | 51.4 AB    | 69.4 A     |  |  |
| Einkorn               | Azure               | 60.0          | 44.2       | 57.3       |  |  |
| Гианаак               | Lucille 1 (hull on) | 48.5 A        | 47.1       | 58.6       |  |  |
| Emmer                 | Lucille Unhulled    | 51.2 A        | Not tested | Not tested |  |  |
|                       | CP 3530             | 63.6 ABC      | 58.6 A     | 66.0 AB    |  |  |
|                       | Dagmar              | 64.1 ABC      | 47.2 BC    | 66.1 AB    |  |  |
|                       | MN-Torgy            | 72.8 A        | 51.2 BC    | 65.5 AB    |  |  |
| Hard Red Spring       | ND Frohberg         | 58.3 BC       | 51.1 BC    | 62.3 AB    |  |  |
| Wheat                 | ND VitPro           | 56.4 C        | 45.8 B     | 59.6 B     |  |  |
|                       | SY Valda            | 69.7 AB       | 59.1 A     | 74.7 A     |  |  |
|                       | Vida                | 60.7 ABC      | 48.8 BC    | 70.2 AB    |  |  |
|                       | WB 9590             | 68.1 ABC      | 55.6 BC    | 74.0 A     |  |  |
|                       | Antigo              | 153.1 A       | 98.2 AB    | 68.7 A     |  |  |
|                       | Badger              | 135.3 A       | 96.1 B     | 72.5 A     |  |  |
|                       | BetaGene            | 151.4 A       | Not tested | Not tested |  |  |
| Oat                   | Esker               | 134.7 A       | 106.0 AB   | 85.1 A     |  |  |
| Oat                   | Esker 2020          | 159.5 A       | 111.3 AB   | 83.9 A     |  |  |
|                       | ForagePlus          | 152.9 A       | 122.8 A    | 91.0 A     |  |  |
|                       | Laker               | 135.3 A       | 109.3 AB   | 83.0 A     |  |  |
|                       | WIX10305-4          | Not tested    | 121.9 AB   | 69.6 A     |  |  |
|                       | Kewaunee            | 76.0 A        | 65.0 A     | 75.0 A     |  |  |
| Spring Barley         | Quest               | 83.5 A        | 62.5 A     | 76.7 A     |  |  |
|                       | Robust              | 81.5 A        | 58.3 A     | 71.9 A     |  |  |
|                       | Fantex              | 92.1 A        | 64.9 A     | 91.9 A     |  |  |
| Spring Malting Barley | ND Genesis          | 89.3 A        | 78.1 A     | 87.2 A     |  |  |
|                       | Tradition           | 87.2 A        | 69.1 A     | 77.9 A     |  |  |

Table 4. Grain yield of spring-planted small grains. Different letters within a small grain type and year indicate a statistically significant difference in grain yield at 95% confidence.

#### Acknowledgements

This experiment was conducted in Wisconsin as a part of a larger study with additional sites in Ohio, Minnesota, and Nebraska. Special thanks go to Adam Roth, John Gaska, and the University of Wisconsin Soybean and Small Grains Extension program, as well as the teams from OH, MN, and NE, for establishing and managing the experiments.

#### References

Cadeddu, F., Motzo, R., Mureddu, F., and Giunta, F. (2021). Ancient wheat species are suitable to grain-only and grain plus herbage utilisations in marginal Mediterranean environments. *Agronomy for Sustainable Development*, *41*, 15.

Lindsey, L. (2024). Production of Specialty Small Grains in Ohio. Ohio State University Extension. https://ohioline.osu.edu/factsheet/anr-0154

USDA National Agricultural Statistics Service (NASS). (30 Sept. 2024). Wisconsin Ag News – Small Grain Summary. United States Department of Agriculture. https://www.nass.usda.gov/Statistics\_by\_State/Wisconsin/Publications/Crops/2024/WI-Small-Grains-09-24.pdf

Thapa, R.K., Eberle, C., and Youngquist, C. (2023). Ancient spring wheat production in Wyoming. *Crop, Forage & Turfgrass Management, 9,* e20237.

U.S. Wheat Associates. (2024). Soft Red Winter. <u>https://www.uswheat.org/crop-quality/soft-red-winter/</u>