High Value Straw and Weedy Wheat…What Do I Do?

Wet fields, thin stands and spotty winter-kill made spring weed control difficult to impossible in many winter wheat fields, and prolonged wet conditions have encouraged prolific weed growth from competitive broadleaf weeds like giant ragweed and lambsquarters. As we approach harvest in southern WI (week of July 21st) growers simply have limited herbicide options for preharvest weed management. The most popular ones are:

  1. 2,4-D products. There is a 14 day pre-harvest interval with this product. Pre-harvest treatment can be applied when grain is in the dough stage. Only one preharvest application per crop cycle allowed and a maximum of 0.5 lb 2,4-D acid equivalent per acre per application. Please read label for specific product used as there are differences among labels.
  2. Glyphosate products. There is also a 7 day pre-harvest interval with this product, and it can NOT be applied until the grain is at the hard-dough stage (30% moisture or less). Grain treated with glyphosate at this growth stage should not be used for seed as germination can be significantly lowered. Maximum of 0.77 lb glyphosate acid equivalent per acre per application (equivalent of 22 fl oz of Roundup PowerMax per acre).

Some benefits to applying preharvest 2,4-d or glyphosate may include desiccation of green weedy plants to enable an easier combine harvest and quicken the ability to bale straw following the grain harvest. However, drawbacks include a narrow window of application timing ahead of harvest, wheel tracks (if ground applied) will reduce grain yields, and moreover many of the weeds like giant ragweed, waterhemp and lambsquarters will be large and difficult to control. Drift is also a concern when spraying crops this late in the season, particularly with synthetic auxin herbicides such as 2,4-D. Thus, consider a preharvest 2,4-d or glyphosate application as a last resource because partial control of large weeds will greatly increase selection pressure for herbicide resistance. We already have several issues of herbicide resistance in Wisconsin (http://www.wiscweeds.info/post/herbicide-resistance-in-wisconsin-an-overview/).

Shawn P Conley and Rodrigo Werle

Soybean and Corn are Considered Cover Crop Options in WI

Article written by Shawn P. Conley, Joe Lauer and Paul Mitchell

Today Joe Lauer and myself had the opportunity to travel to Door County and participate in an Extension meeting hosted by Annie Deutsch, Jamie Patton and Aerica Bjurstrom. We had great conversation with the group about the agronomic implications of the 2019 growing season. During this meeting we touched on the issues regarding prevent plant and what to do next. This is a obviously a complex issue but an interesting point was brought forward by Dan Muhlenbeck a crop insurance specialist… “Is soybean and/or corn considered a cover crop in WI?”  (I hope you all notice that in my blogs soybean always precedes corn..) Here are our thoughts.

For a crop to be considered a cover crop RMA states that “For crop insurance purposes, a cover crop is a crop generally recognized by agricultural experts as agronomically sound for the area for erosion control or other purposes related to conservation or soil improvement.” Soybean and corn both meet this requirement. However please remember that BMP’s must be followed to meet this requirement.

In a late planted, soybean cover crop situation, plant a minimum of 150,000 seeds per acre and strive to plant in narrow row spacings (<30 inches). This recommendation is intended to minimize soil erosion, maximize ground cover and weed suppression as well as provide adequate N fixation. I do however understand if a farm operation is limited by equipment restrictions (e.g. they only have a 30 inch row planter) I would not preclude them from being eligible to plant soybean as a cover crop. The next consideration is cost. Normally the cost of soybean seed to be used as a cover crop on a per acre basis would be cost prohibitive; however since soybean seed is usually not saved from year to year and treated seed is often devitalized it is often offered at a deep discount late in the year so shop around. Frankly with only 60% of the WI crop planted there should be some reasonably priced seed to be used as cover crops.Now lets talk about corn!

Although corn is not usually considered a cover crop due to 30-inch row spacing and slower early canopy growth than other crops, it is deep-rooted and by the end of the end of the growing season can produce more than 5 Tons DM/A of stover even when planted in July. Ultimately the decision to use corn as a cover crop is the cost of production. Typically, it would cost $400 to $450 per acre to establish corn. Production costs can be reduced by using seed that is not bioengineered, reducing N fertilizer to around 40 to 60 lb N/A, and using a narrower row corn planter (<30-inches), a twin-row planter, or grain drill to narrow row-spacing.

To be clear the intent of this article is to designate that soybean or corn can be considered as options for cover crops. The first thing you must do however is talk to your crop insurance agent and make no decisions without their input. Also please review this excellent article by Paul Mitchell entitled: Can I Use Corn or Soybeans as a Cover Crop on Prevented Plant Acres?

Farmers taking the full prevented plant indemnity should note that they cannot ever harvest the cover crop for grain or seed. RMA rules allow, only after September 1, grazing and harvest as hay (for bedding or feed) and now for silage, haylage or baleage. If a farmer wants to harvest it as grain or seed, then they should declare it as an alternative crop and only collected the partial (35%) prevented plant indemnity.”

With the aforementioned change to prevent plant indemnity the question of soybean as a forage popped into my mailbox multiple times today. From an agronomic perspective I think there are better forage options (higher tonnage) than soybean, but if this is an option for your farm here are some simple thoughts. Harvesting soybeans for forage between the R1 and R5 stage will result in a very high quality silage, but dry matter yields will be reduced significantly. Forage quality will be reduced from R5 soybean forward if a conditioning process is used during harvest as conditioning will cause significant seed shattering. According to our data early maturity group soybeans planted 6/20ish will likely already be at the R6/R7 stage so if you are intending to shoot for higher quality soybean forage go with a later maturity group soybean (~4.0).

Figure 1. Pooled Arlington and Hancock Data.

Figure 2. Spooner data.

 

This is a dynamic discussion so please check back as text and recommendations are subject to change as “to be frank” no one really has all the answers on this topic.

Are Your Beans “Feelin the Burn”?

Adapted from original article posted 6/10/2018 by Shawn P. Conley and Damon Smith

Weed management has been a significant challenge for many farmers and retailers in 2019. The challenges range from short planting windows to shorter pre-emergence and post emergence herbicide application windows to early soybean flowering. As we approach the end of growth stage cutoffs for herbicide applications in early planted soybean can we expect any damage from herbicides and especially the Group 14 herbicides? Well unfortunately the answer to that question is the good ole Extension cop-out answer “Well folks that depends“…..

What we mean by that is as follows:

  1. What growth stage was the soybean crop at?
  2. Where in the United States are you located?
  3. Was the crop stressed before or more importantly after the application?
  4. What rate, a.i., adjuvants, carriers, tank mix partner, etc are we dealing with?
  5. What soybean variety did you plant?
  6. What phase is the moon in….well not really… but you all get the point.

Generally speaking as the soybean growth stage approaches R1 (flowering) the risk for yield loss increases. However this is a highly regional response as we have documented differential yield responses from a +1.2% yield gain in the south to a -4.7% to -4.1% yield loss from the I-states north (Table 1). Furthermore as we transition from specifically using lactofen as a “herbicide” to a tool in white mold management we also note a differential response.  In a recent meta-analysis where Dr. Smith focused on the 6 oz lactofen rate at R1 application he noted a 3.7% yield loss in low-to-moderate disease pressure, but a significant yield increase in high-pressure situations (Figure 1). In Dr. Smith’s meta-anlaysis he does want to emphasize they noticed A LOT of variability among varieties and environments tested  as you can see by the error bars around treatments in Figure 1.

In summary we would expect some level of yield loss in these late “hot” applications; however in-terms of long-term weed management we would rather see you take a small yield hit than allow herbicide resistant weeds go back to seed and replenish the weed seed bank. This is even more critical with expected tighter phytosanitory regulations centered around weed seeds.

Table 1. Percent relative yield change and break-even probabilities for Lactofen applications (12 fl. oz per a + 1%v/v COC) at V4 soybean compared to no application at multiple yield levels and soybean sale prices for studies be­tween 2012 and 2014.

   

Yield level

   

45 bu a-1

60 bu a-1

75 bu a-1

Region RYC (%)

$9

$12

$15

$9

$12

$15

$9

$12

$15

——————-% probability of break-even——————-

South

1.2

31

47

57

47

60

67

57

67

72

I-states

-4.7

0

0

0

0

0

0

0

0

0

North

-4.1 0 0 0 0 0 0 0 0

0

†RYC, percent relative yield change compared to the standard practice
South: Arkansas, Kansas, Kentucky

I-States: Indiana, Iowa, Illinois

North: Michigan, Minnesota, Wisconsin

Figure 1. Yield response to white mold management by disease pressure.

Literature cited:

J.M. Orlowski, B.J. Haverkamp, R.G. Laurenz, D.A. Marburger, E.W. Wilson, S.N. Casteel, S.P. Conley, S.L. Naeve, E.D. Nafziger, K.L. Roozeboom, W.J. Ross, K.D. Thelen, and C.D. Lee. 2016. High-input soybean management systems affect soybean yield, yield components, and economic break-even probabilities. Crop Sci. 56: 4: 1988-2004. doi:10.2135/cropsci2015.10.0620.

Willbur, J.F., Mitchell, P.D., Fall, M.L., Byrne, A.M., Chapman, S.A., Floyd, C.M., Bradley, C.A., Ames, K.A., Chilvers, M.I., Kleczewski, N.M., Malvick, D.K., Mueller, B.D., Mueller, D.S., Kabbage, M., Conley, S.P., and Smith, D.L. 2019. Meta-analytic and economic approaches for evaluation of pesticide impact on Sclerotinia stem rot control and soybean yield in the North Central U.S. Phytopathology. https://doi.org/10.1094/PHYTO-08-18-0289-R.

First thoughts on managing your prevent plant acres

I want to start out this blog being very clear and honest…… I don’t exactly know what the right answer is! However as I have stated before, the best thing about blog articles is that it is a dynamic format and can be rapidly updated and changed. I am sure this blog article will change weekly (maybe daily) as we learn more and I get feedback on this article. So let’s get into it. I think we all agree we need to put something on these fields to not only hold the soil but also manage our weed populations, especially waterhemp. To that end I had two farmers call me this week and ask what would happen if they planted winter rye in June. That is a good question I said so I reached out to many colleagues and we all agreed that yes that was a good question, but none of us had done it to date. Our collective thought was that winter rye or winter wheat (I think rye would be better) would grow 18″ up to maybe 4′ tall, stool out and put out multiple tillers since the plant will not vernalize and induce reproduction. This should develop a fairly rapid and robust canopy that can be very competitive with weeds. Speaking with Fred Kolb at UI, he thought that oat would also be a good cover as it would develop well put out seed heads, and if worked into the soil in the fall, reseed the system and then winterkill so you wouldn’t need to worry about termination next spring. For all of these crops I would target 750,000 to 1,000,000 seeds per acre as a seeding rate (WAG). Obviously this is not a perfect system as there may be some herbicide carryover issues from last year’s crops and we would be planting 100’s to 1000’s of acres that may serve as a green bridge for plant pathogens, but that is potentially next years problems. I encourage anyone reading this article to send me thoughts, feedback or other ideas. I am sure someone has tried this and I would like to add in your experiences.

Soybean Management Strategies to Facilitate Timely Winter Wheat Establishment in 2019

Adapted from original article written by Dr. Adam Gaspar and Dr. Shawn P. Conley

Winter wheat acres across WI have declined over the past few years due to late grain harvests, disease concerns (FHB or scab) and poor wheat prices, however anyone that lives and works in WI knows that a base number of cereal acres are needed to support the dairy industry (straw and land to summer haul manure). As farmers get ready to kick off the 2019 growing season here are a few suggestions to help get your 2019/20 winter wheat crop established on time.

  • Plant early. If weather and soil conditions allow for it plant the acreage you intend to go to winter wheat first. This is regardless of which crop you plan to follow (soybean, corn silage or field corn). Remember the optimal planting date window for most of our WI winter wheat acres is the last week of September through the first week in October. In table 1 below you will notice that for every 3 days soybean planting is delayed we see ~1 day delay in beginning maturity (R7), so delaying planting by one week equates to about 2 days later maturing. However when planting is delaying past June 1st it turns in to more of a 1: 1 relationship. Also remember in WI it normally takes another 5-8 days for the soybean crop to move from R7 to R8 (full maturity).

Table 1. Calendar date for reaching R5 (beginning seed fill) and R7 (beginning maturity) growth stage by planting date and maturity group for the 2014, 2015, and 2016 growing seasons at Arlington and Hancock, WI.

Date of Growth Stage Initiation
R5
R7
Planting Date
Maturity Group
Arlington
Hancock
Arlington
Hancock
May 1st
2.5
3-Aug
4-Aug.
14-Sept.
15-Sept.
2.0
30-July
1-Aug.
9-Sept.
14-Sept.
1.5
26-July
29-July
3-Sept.
9-Sept.
May 20th
2.5
7-Aug.
9-Aug.
18-Sept.
20-Sept.
2.0
3-Aug.
7-Aug.
14-Sept.
18-Sept.
1.5
3-Aug.
4-Aug.
6-Sept.
15-Sept.
June 1st
2.0
11-Aug.
12-Aug.
18-Sept.
24-Sept.
1.5
10-Aug.
9-Aug.
16-Sept.
18-Sept.
1.0
7-Aug.
8-Aug.
10-Sept.
14-Sept.
June 10th
2.0
15-Aug.
17-Aug.
25-Sept.
30-Sept.
1.5
14-Aug.
16-Aug.
20-Sept.
25-Sept.
1.0
11-Aug.
14-Aug.
16-Sept.
18-Sept.
June 20th
1.5
21-Aug.
21-Aug.
27-Sept.
2-Oct.
1.0
18-Aug.
18-Aug.
24-Sept.
26-Sept.
0.5
16-Aug.
16-Aug.
19-Sept.
22-Sept.
  • Consider an earlier maturity group soybean. Plant a high yielding, earlier maturity group soybean to help get that soybean crop harvested on time. Though later maturing varieties “on-average” produce the greatest yields, data from our 2018 WI Soybean Variety Test Results show the maturity group range that included a starred variety (starred varieties do not differ from the highest yield variety in that test) was 2.1-2.9, 1.8-2.4, and 1.8-2.0 in our southern, central and north central regions respectively. This suggests that the “relative” maturity group rating is trumped by individual cultivar genetic yield potential. Therefore growers have options to plant an early maturity group soybean that will be harvested on time and not sacrifice yield.
  • Crop rotation matters. Our long-term rotation data suggests winter wheat yields are greatest following soybean then followed by corn silage and lastly corn for grain.  Therefore plan your rotation accordingly to maximize yield and system efficiency.
  • Manage for the system not necessarily the crop. If you are serious about maximizing wheat grain and straw yield on your farm one of the biggest contributing factors for both of these in WI is timely wheat planting. Make management decisions to facilitate that. *We all know what inputs can extend soybean maturity that don’t necessarily guarantee greater yields. So instead of listing them and fielding angry emails I am being strategically vague here*  In a recent study I would note that across years and environments we did quantify a %RYC (percent relative yield change) swing of -4.1% to 11.2% among various soybean inputs so balance that against a loss of 10-20 bushels of wheat grain yield and 0.5 tons of straw?

As we all know mother nature holds the ultimate trump card on whether we will get our winter wheat crop established in that optimal window. These aforementioned strategies are relatively low risk to the farmer and regardless of what weather patterns we run into are agronomically sound.

Factors to Consider While Assessing Your 2019 Winter Wheat Crop Stand and Spring Nitrogen Timing

As we begin to contemplate spring and the 2019 winter wheat growing season, many growers and consultants alike are beginning to venture out and across their winter wheat fields to assess winter injury and nitrogen timings. Though it is a bit premature to make any rash decisions regarding crop destruction here are a few considerations for assessing your spring 2019 winter wheat stands.

  1. As you look across your wheat landscape vibrant green patches will be interspersed with drab brown areas. The brown areas do not necessarily indicate those plants are dead.

    Arlington Winter Wheat Variety Trial – Roadside Assessment
    In Field Stand Assessment
    Planting Depth and Tiller Assessment
    Growers and consultants can either reassess in a week or pull plants from the field and place in warm environments. Milk houses and kitchens work perfect. Root regrowth will appear from the crown and will appear as vibrant white roots as shown below.
    Spring Root Regrowth in Winter Wheat

    If plants do not recover our critical threshold for turning over a field is 12 to 15 live plants per square foot. Below this threshold (< 12 plants per square foot) is an automatic replant decision.

  2. In regards to N application timing for winter wheat that decision is pretty darn simple. Research from Dr. Carrie Laboski’s program indicates that the optimal time to apply nitrogen to wheat in WI is green-up regardless of tiller count. For more detailed information check out her  blog article here: Time your spring nitrogen applications to maximize winter wheat yield.
  3. Also remember that wheat grain in itself is only part of the revenue you capture with winter wheat. The price of winter wheat straw remains strong and roughly ~11% less acres of winter wheat were established last fall than the previous year (2017/18). Please consider that revenue stream before any replant decisions are made.
  4. If you decide your wheat crop is not worth keeping (i.e. you can tell your neighbors your planted a planned cover crop last fall) please remember to terminate it a minimum of two weeks before you establish your next cash crop. Click for more details on Cover Crop Do’s and Dont’s

Winners of the 2018 WI Soybean Yield Contest are Announced

The 1st place winner in Division 4, Riley Bros Farms of Darlington, grew Asgrow AG2636 and harvested 99.58 bu/a.  In second place, Venable Farms Inc. of Janesville grew Jung 1243R2X and harvested 93.22 bu/a.  In Division 3, Jim Salentine of Luxemburg harvested 79.32 bu/a with Steyer 1401L and in 2nd place, Oeh My Farms of Abbotsford harvested 77.90 bu/a with Credenz CZ 1028LL.  In Division 2, Custer Farms of Chippewa Falls achieved 72.67 bu/a from Asgrow AG19X8 for first place.  In 2nd place, Adam Majeske of Balsam Lake harvested 56.64 bu/a from Asgrow AG17X8 soybeans.  No entries were submitted for Division 1.

Kreuziger Grain Farms of Juneau was the winner of the Soybean Quality contest with 2,737 pounds of protein plus oil per acre from Pioneer P22T41R2.

The contest is sponsored by the WI Soybean Program and organized to encourage the development of new and innovative management practices and to show the importance of using sound cultural practices in WI soybean production.
For more information please contact Shawn Conley, WI State Soybean Specialist at 608-800-7056 or spconley@wisc.edu

Finalists for the 2018 WI Soybean Yield Contest are Announced

Many growers across WI experienced above average growing conditions in 2018; however, delayed harvest caused by frequent rainfall events led to fewer overall entries into our 2018 Yield Contest. The top two entries in each division (in no particular order) were:

Division 4:

  • Jeff Riley, Darlington (planted Asgrow AG2636)
  • Nick Venable, Janesville (planted Jung 1243R2X)

Division 3:

  • Craig Oehmichen, Abbotsford (planted Credenz CZ 1028LL)
  • Jim Salentine, Luxemburg (planted Steyer 1401L)

Division 2:

  • Doug Custer, Chippewa Falls (planted Asgrow AG19X8)
  • Adam Majeske, Balsam Lake (planted Asgrow AG17X8)

Division 1: 

*No entries were submitted for Division 1

The Soybean Quality Contest was optional for any Soybean Yield Contest entrant.  There are no geographical divisions for the Quality Contest.  One cash award will be presented statewide to the highest protein plus oil yield per acre (measured in lbs. per acre). The finalists for the Soybean Quality Contest are:

  • Jerry Kreuziger, Juneau (planted Pioneer P22T41R2)
  • Jim Salentine, Luxemburg (planted Steyer 1401L)

The final ranking and awards will be presented at the Corn Soy Expo to be held at the Kalahari Convention Center, Wisconsin Dells on Thursday January 31st during the WSA/WSMB annual meeting.

The contest is sponsored by the WI Soybean Program and organized to encourage the development of new and innovative soybean management practices as well as show the importance of using sound cultural practices in WI soybean production.

For more information please contact Shawn Conley, WI State Soybean Specialist at 608-800-7056 or spconley@wisc.edu